|
|
A253449
|
|
Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock diagonal minus antidiagonal sum nondecreasing horizontally and vertically.
|
|
2
|
|
|
81, 414, 1388, 3639, 8501, 19701, 48293, 126357, 346997, 982677, 2837237, 8295957, 24462197, 72541077, 215938037, 644449557, 1926625397, 5766435477, 17272430837, 51763547157, 155183156597, 465334505877, 1395573595637, 4185860948757
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
Column 1 of A253456.
|
|
LINKS
|
R. H. Hardin, Table of n, a(n) for n = 1..210
|
|
FORMULA
|
Empirical: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3) for n>10.
Empirical: a(n) = 400*3^(n-3) + 205*2^(n-1) + 2917 for n>7.
Empirical g.f.: x*(81 - 72*x - 205*x^2 - 621*x^3 - 549*x^4 + 396*x^5 + 1764*x^6 + 2304*x^7 + 1872*x^8 + 864*x^9) / ((1 - x)*(1 - 2*x)*(1 - 3*x)). - Colin Barker, Mar 20 2018
|
|
EXAMPLE
|
Some solutions for n=4:
..0..2....0..0....0..2....0..1....2..2....0..1....2..2....1..2....1..1....0..2
..1..2....1..1....0..1....1..1....0..0....0..0....0..0....2..2....2..0....2..1
..1..1....2..2....2..2....2..2....1..1....1..0....1..1....2..1....1..0....2..0
..1..0....0..0....1..2....2..2....0..0....2..1....2..2....1..1....2..2....2..1
..1..0....0..2....0..2....1..2....0..0....2..2....1..2....0..2....0..2....0..0
|
|
CROSSREFS
|
Cf. A253456.
Sequence in context: A253495 A253456 A236155 * A236148 A205986 A206668
Adjacent sequences: A253446 A253447 A253448 * A253450 A253451 A253452
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
R. H. Hardin, Jan 01 2015
|
|
STATUS
|
approved
|
|
|
|