login
A205986
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X3 or 3X2 subblock having exactly two clockwise edge increases
9
81, 423, 423, 2232, 1980, 2232, 11568, 8004, 8004, 11568, 60432, 33504, 27060, 33504, 60432, 315357, 140802, 103998, 103998, 140802, 315357, 1643538, 591336, 408411, 419088, 408411, 591336, 1643538, 8574615, 2482596, 1599096, 1814784, 1814784
OFFSET
1,1
COMMENTS
Table starts
......81......423.....2232.....11568......60432......315357......1643538
.....423.....1980.....8004.....33504.....140802......591336......2482596
....2232.....8004....27060....103998.....408411.....1599096......6296976
...11568....33504...103998....419088....1814784.....7793856.....35107968
...60432...140802...408411...1814784....9653376....50843904....279003648
..315357...591336..1599096...7793856...50843904...338009472...2260666464
.1643538..2482596..6296976..35107968..279003648..2260666464..19410499584
.8574615.10425528.24685680.152423040.1502833632.15125213376.160992300384
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +10*a(n-2) +35*a(n-3) +a(n-4) +3*a(n-5) +a(n-6) +2*a(n-7)
k=2: a(n) = a(n-1) +7*a(n-2) +26*a(n-3) +5*a(n-4) -12*a(n-6) -4*a(n-7) for n>9
k=3: a(n) = 60*a(n-3) +8*a(n-5) for n>9
k=4: a(n) = 84*a(n-3) for n>9
k=5: a(n) = 156*a(n-3) for n>10
k=6: a(n) = 300*a(n-3) for n>11
k=7: a(n) = 588*a(n-3) for n>12
k=8: a(n) = 1164*a(n-3) for n>13
k=9: a(n) = 2316*a(n-3) for n>14
k=10: a(n) = 4620*a(n-3) for n>15
k=11: a(n) = 9228*a(n-3) for n>16
k=12: a(n) = 18444*a(n-3) for n>17
k=13: a(n) = 36876*a(n-3) for n>18
apparently: a(n) = (36*2^(k-3) +12)*a(n-3) for n>k+5 and k>3
EXAMPLE
Some solutions for n=4 k=3
..0..0..0..1....1..0..0..0....1..1..2..1....1..2..2..2....0..1..1..0
..1..2..1..1....1..2..1..1....0..1..1..2....2..2..1..0....0..2..0..2
..0..1..1..2....2..1..1..2....1..2..1..1....2..1..0..0....0..1..1..2
..1..1..2..0....1..1..2..1....1..1..2..0....1..0..0..2....2..1..1..0
..1..2..0..0....0..0..0..0....0..1..1..1....0..0..1..0....2..0..2..2
CROSSREFS
Sequence in context: A236155 A253449 A236148 * A206668 A238180 A206414
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 02 2012
STATUS
approved