login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A205986
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with every 2X3 or 3X2 subblock having exactly two clockwise edge increases
9
81, 423, 423, 2232, 1980, 2232, 11568, 8004, 8004, 11568, 60432, 33504, 27060, 33504, 60432, 315357, 140802, 103998, 103998, 140802, 315357, 1643538, 591336, 408411, 419088, 408411, 591336, 1643538, 8574615, 2482596, 1599096, 1814784, 1814784
OFFSET
1,1
COMMENTS
Table starts
......81......423.....2232.....11568......60432......315357......1643538
.....423.....1980.....8004.....33504.....140802......591336......2482596
....2232.....8004....27060....103998.....408411.....1599096......6296976
...11568....33504...103998....419088....1814784.....7793856.....35107968
...60432...140802...408411...1814784....9653376....50843904....279003648
..315357...591336..1599096...7793856...50843904...338009472...2260666464
.1643538..2482596..6296976..35107968..279003648..2260666464..19410499584
.8574615.10425528.24685680.152423040.1502833632.15125213376.160992300384
LINKS
FORMULA
Empirical for column k:
k=1: a(n) = 2*a(n-1) +10*a(n-2) +35*a(n-3) +a(n-4) +3*a(n-5) +a(n-6) +2*a(n-7)
k=2: a(n) = a(n-1) +7*a(n-2) +26*a(n-3) +5*a(n-4) -12*a(n-6) -4*a(n-7) for n>9
k=3: a(n) = 60*a(n-3) +8*a(n-5) for n>9
k=4: a(n) = 84*a(n-3) for n>9
k=5: a(n) = 156*a(n-3) for n>10
k=6: a(n) = 300*a(n-3) for n>11
k=7: a(n) = 588*a(n-3) for n>12
k=8: a(n) = 1164*a(n-3) for n>13
k=9: a(n) = 2316*a(n-3) for n>14
k=10: a(n) = 4620*a(n-3) for n>15
k=11: a(n) = 9228*a(n-3) for n>16
k=12: a(n) = 18444*a(n-3) for n>17
k=13: a(n) = 36876*a(n-3) for n>18
apparently: a(n) = (36*2^(k-3) +12)*a(n-3) for n>k+5 and k>3
EXAMPLE
Some solutions for n=4 k=3
..0..0..0..1....1..0..0..0....1..1..2..1....1..2..2..2....0..1..1..0
..1..2..1..1....1..2..1..1....0..1..1..2....2..2..1..0....0..2..0..2
..0..1..1..2....2..1..1..2....1..2..1..1....2..1..0..0....0..1..1..2
..1..1..2..0....1..1..2..1....1..1..2..0....1..0..0..2....2..1..1..0
..1..2..0..0....0..0..0..0....0..1..1..1....0..0..1..0....2..0..2..2
CROSSREFS
Sequence in context: A236155 A253449 A236148 * A206668 A238180 A206414
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin Feb 02 2012
STATUS
approved