login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253196
Irregular array read by rows. T(n,k) is the number of divisors d of n such that k^2 is the greatest square that divides d, n>=1, 1<=k<=A000188(n).
1
1, 2, 2, 2, 1, 2, 4, 2, 2, 2, 2, 0, 1, 4, 2, 4, 2, 2, 4, 4, 2, 2, 0, 1, 2, 4, 0, 2, 2, 4, 2, 4, 4, 2, 4, 4, 2, 0, 0, 0, 1, 4, 2, 0, 2, 4, 2, 2, 8, 2, 2, 2, 0, 2, 4, 4, 4, 4, 2, 2, 0, 0, 1, 2, 4, 4, 4, 4, 2, 8, 2, 4, 2, 4, 0, 2, 4, 2, 4, 4, 0, 2, 2, 0, 0, 0, 0, 0, 1, 4, 0, 0, 0, 2, 4, 4, 2, 2, 4, 0, 4, 4, 4, 4, 4, 4, 2, 8, 4
OFFSET
1,2
COMMENTS
Row sums are A000005.
Column 1 is A034444.
LINKS
FORMULA
Dirichlet g.f. for column k: 1/k^(2*s) * zeta(s)^2/zeta(2*s).
EXAMPLE
1
2
2
2,1
2
4
2
2,2
2,0,1
4
2
4,2
2
4
4
2,2,0,1
2
4,0,2
For n=18, The divisors are: 1,2,3,6,9,18. T(18,1)=4 because 1 is the largest square that divides 1,2,3,6. T(18,3) = 2 because 9 is the largest square that divides 9,18.
MAPLE
with(numtheory):
T:= n-> (p-> seq(coeff(p, x, j), j=1..degree(p)))(add(
x^mul(i[1]^iquo(i[2], 2), i=ifactors(d)[2]), d=divisors(n))):
seq(T(n), n=1..70); # Alois P. Heinz, Mar 25 2015
MATHEMATICA
nn = 60; g[list_] := list /. {j___, 0 ...} -> {j}; f[list_, i_] := list[[i]]; Map[g, Transpose[Table[a = Table[If[n == k^2, 1, 0], {n, 1, nn}]; b = Table[2^PrimeNu[n], {n, 1, nn}]; Table[DirichletConvolve[f[a, n], f[b, n], n, m], {m, 1, nn}], {k, 1, nn}]]] // Grid
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Geoffrey Critzer, Mar 24 2015
STATUS
approved