login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A253195
Numbers congruent to 5 or 8 mod 9.
1
5, 8, 14, 17, 23, 26, 32, 35, 41, 44, 50, 53, 59, 62, 68, 71, 77, 80, 86, 89, 95, 98, 104, 107, 113, 116, 122, 125, 131, 134, 140, 143, 149, 152, 158, 161, 167, 170, 176, 179, 185, 188, 194, 197, 203, 206, 212, 215, 221, 224, 230, 233, 239, 242, 248, 251
OFFSET
1,1
COMMENTS
These numbers cannot be written as the sum of two triangular numbers.
FORMULA
a(n) = a(n-1) + a(n-2) - a(n-3), n >= 4.
G.f.: x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2).
a(n) = a(n-2) + 9.
a(n) = 9*n - a(n-1) - 5.
a(n) = 4*n + 2*ceiling(n/2) - floor(n/2) - 1.
a(n) = (9*n - (3/2)*(1 + (- 1)^n) + 1)/2.
E.g.f.: 1 + ((18*x - 1)*exp(x) - 3*exp(-x))/4. - David Lovler, Sep 06 2022
MATHEMATICA
LinearRecurrence[{1, 1, -1}, {5, 8, 14}, 56]
Select[Range[300], MemberQ[{5, 8}, Mod[#, 9]]&] (* Harvey P. Dale, Mar 17 2020 *)
PROG
(Magma) [n: n in [0..251] | n mod 9 in {5, 8}];
(PARI) Vec(x*(5 + 3*x + x^2)/((1 + x)*(1 - x)^2) + O(x^80)) \\ Michel Marcus, Mar 25 2015
CROSSREFS
Subsequence of A014132 and of A020757.
Sequence in context: A314476 A314477 A314478 * A314479 A314480 A314481
KEYWORD
nonn,easy
AUTHOR
STATUS
approved