login
A253029
Number of (n+2) X (1+2) 0..2 arrays with every consecutive three elements in every row and column having exactly two distinct values, and new values 0 upwards introduced in row major order.
1
297, 1647, 9126, 50571, 280233, 1552878, 8605089, 47684079, 264235662, 1464230547, 8113859721, 44961990246, 249151530393, 1380643622703, 7650672704694, 42395294391579, 234928490071977, 1301828333534622
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 5*a(n-1) + 3*a(n-2).
Conjectures from Colin Barker, Dec 08 2018: (Start)
G.f.: 27*x*(11 + 6*x) / (1 - 5*x - 3*x^2).
a(n) = (27*2^(-n)*((5-sqrt(37))^n*(-6+sqrt(37)) + (5+sqrt(37))^n*(6+sqrt(37)))) / sqrt(37).
(End)
EXAMPLE
Some solutions for n=4:
..0..1..0....0..1..0....0..0..1....0..0..1....0..1..1....0..0..1....0..0..1
..0..2..0....1..0..0....1..0..0....1..1..2....2..1..1....2..1..2....1..2..2
..2..1..2....0..0..1....0..1..1....0..0..2....0..0..2....0..0..1....0..0..1
..0..2..2....0..1..0....0..1..0....1..1..0....0..0..2....0..0..2....1..2..1
..0..1..1....1..0..1....1..0..1....0..0..2....2..2..1....2..1..1....0..2..0
..2..1..2....1..0..0....0..1..1....0..0..2....2..0..2....2..0..2....0..0..1
CROSSREFS
Column 1 of A253035.
Sequence in context: A179158 A037043 A253035 * A251289 A281132 A200855
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 26 2014
STATUS
approved