login
A037043
3-white numbers: partition digits of n^3 into blocks of 3 starting at right; then sum of these 3-digit numbers equals n.
4
0, 1, 297, 1295, 1296, 1405, 1592, 1701, 1702, 1997, 1998, 1999
OFFSET
1,3
COMMENTS
The 1-white numbers are 0 1 2 3 4 5 6 7 8 9; the 2-white numbers are 0 1 45 55 99.
EXAMPLE
297^3 = 26198073 => 26,198,073 and 26 + 198 + 073 = 297; 1999^3=7988006997 and 7+988+006+997=1999.
MATHEMATICA
twnQ[n_]:=Module[{c=IntegerDigits[n^3], a}, a=Take[c, Mod[Length[c], 3]]; Total[ FromDigits/@ Partition[Drop[c, Length[a]], 3]]+FromDigits[a]==n]; Select[ Range[ 0, 2000], twnQ] (* Harvey P. Dale, Feb 08 2013 *)
Select[Range[0, 10^5], # == Plus @@ IntegerDigits[#^3, 10^3] &] (* Giovanni Resta, Jul 12 2016 *)
Select[Range[0, 2000], Total[FromDigits/@(Reverse/@Partition[Reverse[ IntegerDigits[ #^3]], UpTo[3]])] == #&] (* Harvey P. Dale, May 24 2023 *)
CROSSREFS
Sequence in context: A260924 A053394 A179158 * A253035 A253029 A251289
KEYWORD
full,nonn,easy,base,fini,nice
EXTENSIONS
Offset set to 1 by Paolo P. Lava, Jul 12 2016
STATUS
approved