login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of nX5 nonnegative integer arrays with upper left 0 and lower right n+5-6 and value increasing by 0 or 1 with every step right or down
1

%I #6 Nov 24 2015 05:12:28

%S 1,19,413,6997,84910,762227,5385305,31454256,157376166,692347393,

%T 2731553014,9814551889,32510650689,100275435009,290361386801,

%U 794754882094,2068183070502,5142171510385,12267196687798,28182388823719

%N Number of nX5 nonnegative integer arrays with upper left 0 and lower right n+5-6 and value increasing by 0 or 1 with every step right or down

%C Column 5 of A252930

%H R. H. Hardin, <a href="/A252927/b252927.txt">Table of n, a(n) for n = 1..210</a>

%F Empirical: a(n) = (47/17888985354240000)*n^20 + (47/149074877952000)*n^19 + (167/10003708915200)*n^18 + (4591/8892185702400)*n^17 + (29063/2802159360000)*n^16 + (187361/1307674368000)*n^15 + (13481939/9415255449600)*n^14 + (1082533/98075577600)*n^13 + (454942751/6584094720000)*n^12 + (23035147/67060224000)*n^11 + (43650403/34488115200)*n^10 + (134989213/40236134400)*n^9 + (2353290548929/470762772480000)*n^8 - (1781952749/3923023104000)*n^7 + (174219179149/2353813862400)*n^6 + (1662462491/16345929600)*n^5 + (42818968289/66718080000)*n^4 - (16827599/22422400)*n^3 + (9481442611/5333065920)*n^2 - (565043267/116396280)*n + 4.

%F Empirical: G.f.: -x*(1 -2*x +224*x^2 +984*x^3 +5418*x^4 -7437*x^5 +43066*x^6 -112135*x^7 +198529*x^8 -285030*x^9 +339839*x^10 -332484*x^11 +266120*x^12 -174781*x^13 +93817*x^14 -40498*x^15 +13679*x^16 -3477*x^17 +627*x^18 -72*x^19 +4*x^20) / (x-1)^21 . - _R. J. Mathar_, Nov 24 2015

%e Some solutions for n=4

%e ..0..1..1..1..2....0..1..1..1..1....0..0..1..2..3....0..0..0..1..1

%e ..0..1..1..2..2....0..1..2..2..2....0..0..1..2..3....0..1..1..1..2

%e ..0..1..1..2..2....1..1..2..2..2....1..1..2..3..3....0..1..2..2..3

%e ..1..1..1..2..3....2..2..2..2..3....1..1..2..3..3....1..1..2..2..3

%K nonn

%O 1,2

%A _R. H. Hardin_, Dec 24 2014