login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252927
Number of nX5 nonnegative integer arrays with upper left 0 and lower right n+5-6 and value increasing by 0 or 1 with every step right or down
1
1, 19, 413, 6997, 84910, 762227, 5385305, 31454256, 157376166, 692347393, 2731553014, 9814551889, 32510650689, 100275435009, 290361386801, 794754882094, 2068183070502, 5142171510385, 12267196687798, 28182388823719
OFFSET
1,2
COMMENTS
Column 5 of A252930
LINKS
FORMULA
Empirical: a(n) = (47/17888985354240000)*n^20 + (47/149074877952000)*n^19 + (167/10003708915200)*n^18 + (4591/8892185702400)*n^17 + (29063/2802159360000)*n^16 + (187361/1307674368000)*n^15 + (13481939/9415255449600)*n^14 + (1082533/98075577600)*n^13 + (454942751/6584094720000)*n^12 + (23035147/67060224000)*n^11 + (43650403/34488115200)*n^10 + (134989213/40236134400)*n^9 + (2353290548929/470762772480000)*n^8 - (1781952749/3923023104000)*n^7 + (174219179149/2353813862400)*n^6 + (1662462491/16345929600)*n^5 + (42818968289/66718080000)*n^4 - (16827599/22422400)*n^3 + (9481442611/5333065920)*n^2 - (565043267/116396280)*n + 4.
Empirical: G.f.: -x*(1 -2*x +224*x^2 +984*x^3 +5418*x^4 -7437*x^5 +43066*x^6 -112135*x^7 +198529*x^8 -285030*x^9 +339839*x^10 -332484*x^11 +266120*x^12 -174781*x^13 +93817*x^14 -40498*x^15 +13679*x^16 -3477*x^17 +627*x^18 -72*x^19 +4*x^20) / (x-1)^21 . - R. J. Mathar, Nov 24 2015
EXAMPLE
Some solutions for n=4
..0..1..1..1..2....0..1..1..1..1....0..0..1..2..3....0..0..0..1..1
..0..1..1..2..2....0..1..2..2..2....0..0..1..2..3....0..1..1..1..2
..0..1..1..2..2....1..1..2..2..2....1..1..2..3..3....0..1..2..2..3
..1..1..1..2..3....2..2..2..2..3....1..1..2..3..3....1..1..2..2..3
CROSSREFS
Sequence in context: A221584 A015694 A099277 * A172740 A172816 A202040
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 24 2014
STATUS
approved