login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Squarefree version of A252867.
4

%I #21 Oct 03 2018 08:56:37

%S 1,2,3,10,21,5,6,35,22,15,14,33,7,30,77,26,105,13,42,65,66,91,11,70,

%T 143,210,187,39,55,78,385,34,165,182,51,110,273,85,154,195,119,330,17,

%U 231,170,429,238,715,102,455,374,1365,38,1155,442,57,770,663,95,462,1105,114,1001,255

%N Squarefree version of A252867.

%C a(n) = n if n <= 3, otherwise the first squarefree number not occurring earlier having at least one common factor with a(n-2), but none with a(n-1). The squarefree numbers are ordered by their occurrence in A019565.

%C These represent the same sets of integers as A252867 does, but using the factorization of squarefree numbers for the representation.

%C This is a permutation of the squarefree numbers. [I believe this is at present only a conjecture. - _N. J. A. Sloane_, Jan 10 2015]

%H Chai Wah Wu, <a href="/A252868/b252868.txt">Table of n, a(n) for n = 1..10000</a>

%H David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, <a href="http://arxiv.org/abs/1501.01669">The Yellowstone Permutation</a>, arXiv preprint arXiv:1501.01669, 2015 and <a href="https://cs.uwaterloo.ca/journals/JIS/VOL18/Sloane/sloane9.html">J. Int. Seq. 18 (2015) 15.6.7</a>.

%F a(n)=A019565(A252867(n-1))

%t (* b = A019565, c = A252867 *)

%t b[n_] := Times @@ Prime[Flatten[Position[#, 1]]]&[Reverse[IntegerDigits[n, 2]]];

%t c[n_] := c[n] = If[n<3, n, For[k=3, True, k++, If[FreeQ[Array[c, n-1], k], If[BitAnd[k, c[n-2]] >= 1 && BitAnd[k, c[n-1]] == 0, Return[k]]]]];

%t a[n_] := b[c[n-1]];

%t Array[a, 64] (* _Jean-François Alcover_, Oct 03 2018 *)

%o (PARI) invecn(v, k, x)=for(i=1, k, if(v[i]==x, return(i))); 0

%o squarefree(n)=local(r=1,i=1);while(n>0,if(n%2,r*=prime(i));i++;n\=2);r

%o alist(n)=local(v=vector(n, i, i-1), x); for(k=4, n, x=3; while(invecn(v, k-1, x)||!bitand(v[k-2], x)||bitand(v[k-1], x), x++); v[k]=x); vector(n,i,squarefree(v[i]))

%o (Python)

%o from operator import mul

%o from functools import reduce

%o from sympy import prime

%o def A019565(n):

%o ....return reduce(mul,(prime(i+1) for i,v in enumerate(bin(n)[:1:-1]) if v == '1')) if n > 0 else 1

%o A252868_list, l1, l2, s, b = [1,2,3], 2, 1, 3, set()

%o for _ in range(10**4):

%o ....i = s

%o ....while True:

%o ........if not (i in b or i & l1) and i & l2:

%o ............A252868_list.append(A019565(i))

%o ............l2, l1 = l1, i

%o ............b.add(i)

%o ............while s in b:

%o ................b.remove(s)

%o ................s += 1

%o ............break

%o ........i += 1 # _Chai Wah Wu_, Dec 25 2014

%Y Cf. A252867, A098550, A252865, A048793, A019565.

%K nonn

%O 1,2

%A _Franklin T. Adams-Watters_, Dec 23 2014