login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of ways of n-coloring the square grid graph G_(3,3) such that no rectangle exists having all 4 corners of the same color.
4

%I #10 Dec 23 2014 19:26:10

%S 0,0,144,13932,226224,1809360,9637200,39225564,131679072,382238784,

%T 990202320,2340528300,5130339984,10556808912,20586528144,38330476380,

%U 68553028800,118348187904,198021287952,322219869804,511363229040,793426309200,1206140143824

%N Number of ways of n-coloring the square grid graph G_(3,3) such that no rectangle exists having all 4 corners of the same color.

%C The square grid graph G_(3,3) has 9 vertices, 12 edges and 10 rectangles.

%H Alois P. Heinz, <a href="/A252779/b252779.txt">Table of n, a(n) for n = 0..1000</a>

%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/GridGraph.html">Grid Graph</a>

%F a(n) = n*(n-1)^2*(n^6+2*n^5+3*n^4-6*n^3-15*n^2-4*n+12).

%F G.f.: 36 *x^2 *(x^7 +18*x^6 +481*x^5 +2280*x^4 +4355*x^3 +2594*x^2 +347*x+4) / (x-1)^10.

%p a:= n-> (((((n^3-10)*n^2+20)*n+5)*n-28)*n+12)*n:

%p seq(a(n), n=0..30);

%Y Cf. A252778, A252780, A252839.

%K nonn,easy

%O 0,3

%A _Alois P. Heinz_, Dec 21 2014