login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A252779
Number of ways of n-coloring the square grid graph G_(3,3) such that no rectangle exists having all 4 corners of the same color.
4
0, 0, 144, 13932, 226224, 1809360, 9637200, 39225564, 131679072, 382238784, 990202320, 2340528300, 5130339984, 10556808912, 20586528144, 38330476380, 68553028800, 118348187904, 198021287952, 322219869804, 511363229040, 793426309200, 1206140143824
OFFSET
0,3
COMMENTS
The square grid graph G_(3,3) has 9 vertices, 12 edges and 10 rectangles.
LINKS
Eric Weisstein's World of Mathematics, Grid Graph
FORMULA
a(n) = n*(n-1)^2*(n^6+2*n^5+3*n^4-6*n^3-15*n^2-4*n+12).
G.f.: 36 *x^2 *(x^7 +18*x^6 +481*x^5 +2280*x^4 +4355*x^3 +2594*x^2 +347*x+4) / (x-1)^10.
MAPLE
a:= n-> (((((n^3-10)*n^2+20)*n+5)*n-28)*n+12)*n:
seq(a(n), n=0..30);
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Dec 21 2014
STATUS
approved