login
A252630
Numbers n such that the sum of the hexagonal numbers X(n), X(n+1), X(n+2) and X(n+3) is equal to the heptagonal number H(m) for some m.
2
50, 16503, 5314316, 1711193649, 550999041062, 177419980028715, 57128682570205568, 18395258367626164581, 5923216065693054789914, 1907257177894796016188127, 614130888066058624157787380, 197748238700092982182791348633, 63674318730541874204234656472846
OFFSET
1,1
COMMENTS
Also positive integers x in the solutions to 16*x^2-5*y^2+40*x+3*y+44 = 0, the corresponding values of y being A252631.
FORMULA
a(n) = 323*a(n-1)-323*a(n-2)+a(n-3).
G.f.: x*(3*x^2-353*x-50) / ((x-1)*(x^2-322*x+1)).
a(n) =-5/4+1/80*(161+72*sqrt(5))^(-n)*(-70-37*sqrt(5)+(-70+37*sqrt(5))*(161+72*sqrt(5))^(2*n)). - Colin Barker, Mar 03 2016
EXAMPLE
50 is in the sequence because X(50)+X(51)+X(52)+X(53) = 4950+5151+5356+5565 = 21022 = H(92).
PROG
(PARI) Vec(x*(3*x^2-353*x-50)/((x-1)*(x^2-322*x+1)) + O(x^100))
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 19 2014
STATUS
approved