login
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 5 6 or 8 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 5 6 or 8
9

%I #4 Dec 16 2014 19:52:39

%S 2018,4006,4006,6089,5716,6089,10227,6222,6222,10227,20782,9142,10070,

%T 9142,20782,39981,19540,22016,22016,19540,39981,72899,40178,68675,

%U 63277,68675,40178,72899,153357,89296,180469,214176,214176,180469,89296,153357

%N T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 5 6 or 8 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 5 6 or 8

%C Table starts

%C ...2018....4006.....6089....10227.....20782.......39981.......72899

%C ...4006....5716.....6222.....9142.....19540.......40178.......89296

%C ...6089....6222....10070....22016.....68675......180469......503439

%C ..10227....9142....22016....63277....214176......632453.....1835652

%C ..20782...19540....68675...214176...1091359.....3999229....13814611

%C ..39981...40178...180469...632453...3999229....19701604....76990025

%C ..72899...89296...503439..1835652..13814611....76990025...287805377

%C .153357..225890..1603276..6821035..72653087...492999163..2229362249

%C .302168..497694..4554309.20633429.271107529..2520993313.12829378336

%C .567097.1164378.13198911.59088476.955749031.10349882135.47542221588

%H R. H. Hardin, <a href="/A252334/b252334.txt">Table of n, a(n) for n = 1..477</a>

%F Empirical for column k:

%F k=1: [linear recurrence of order 62] for n>73

%F k=2: [order 38] for n>42

%F k=3: [order 45] for n>50

%F k=4: [order 60] for n>64

%F k=5: [order 81] for n>86

%e Some solutions for n=4 k=4

%e ..3..3..2..0..3..2....2..2..1..2..2..2....3..2..3..3..2..3....2..2..2..2..1..0

%e ..0..2..1..2..2..1....0..3..2..3..0..2....2..1..2..2..1..2....3..2..0..3..2..0

%e ..3..0..2..3..0..2....3..3..2..0..3..2....3..2..0..3..2..0....3..2..3..0..2..3

%e ..0..3..2..3..3..2....2..2..1..2..2..1....3..2..3..0..2..3....2..1..2..2..1..2

%e ..2..2..1..2..2..1....3..3..2..3..0..2....2..1..2..2..1..2....3..2..0..3..2..0

%e ..3..3..2..3..0..2....3..3..2..0..3..0....3..0..0..3..2..1....0..2..3..0..2..3

%K nonn,tabl

%O 1,1

%A _R. H. Hardin_, Dec 16 2014