login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A252334
T(n,k)=Number of (n+2)X(k+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 5 6 or 8 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 5 6 or 8
9
2018, 4006, 4006, 6089, 5716, 6089, 10227, 6222, 6222, 10227, 20782, 9142, 10070, 9142, 20782, 39981, 19540, 22016, 22016, 19540, 39981, 72899, 40178, 68675, 63277, 68675, 40178, 72899, 153357, 89296, 180469, 214176, 214176, 180469, 89296, 153357
OFFSET
1,1
COMMENTS
Table starts
...2018....4006.....6089....10227.....20782.......39981.......72899
...4006....5716.....6222.....9142.....19540.......40178.......89296
...6089....6222....10070....22016.....68675......180469......503439
..10227....9142....22016....63277....214176......632453.....1835652
..20782...19540....68675...214176...1091359.....3999229....13814611
..39981...40178...180469...632453...3999229....19701604....76990025
..72899...89296...503439..1835652..13814611....76990025...287805377
.153357..225890..1603276..6821035..72653087...492999163..2229362249
.302168..497694..4554309.20633429.271107529..2520993313.12829378336
.567097.1164378.13198911.59088476.955749031.10349882135.47542221588
LINKS
FORMULA
Empirical for column k:
k=1: [linear recurrence of order 62] for n>73
k=2: [order 38] for n>42
k=3: [order 45] for n>50
k=4: [order 60] for n>64
k=5: [order 81] for n>86
EXAMPLE
Some solutions for n=4 k=4
..3..3..2..0..3..2....2..2..1..2..2..2....3..2..3..3..2..3....2..2..2..2..1..0
..0..2..1..2..2..1....0..3..2..3..0..2....2..1..2..2..1..2....3..2..0..3..2..0
..3..0..2..3..0..2....3..3..2..0..3..2....3..2..0..3..2..0....3..2..3..0..2..3
..0..3..2..3..3..2....2..2..1..2..2..1....3..2..3..0..2..3....2..1..2..2..1..2
..2..2..1..2..2..1....3..3..2..3..0..2....2..1..2..2..1..2....3..2..0..3..2..0
..3..3..2..3..0..2....3..3..2..0..3..0....3..0..0..3..2..1....0..2..3..0..2..3
CROSSREFS
Sequence in context: A282331 A183768 A119517 * A252327 A252326 A119423
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Dec 16 2014
STATUS
approved