login
A252142
Number of (n+2)X(2+2) 0..3 arrays with every 3X3 subblock row and column sum equal to 0 3 5 6 or 7 and every 3X3 diagonal and antidiagonal sum not equal to 0 3 5 6 or 7
1
3026, 2543, 3073, 3797, 5511, 7997, 11573, 16734, 25572, 37796, 57507, 85674, 130391, 193869, 301261, 451687, 701066, 1062950, 1657016, 2508639, 3954332, 6021763, 9489231, 14573849, 23053799, 35426048, 56393822, 87032798, 138567723
OFFSET
1,1
COMMENTS
Column 2 of A252148
LINKS
FORMULA
Empirical: a(n) = a(n-1) +a(n-2) +8*a(n-3) -6*a(n-4) -10*a(n-5) -14*a(n-6) -3*a(n-7) +34*a(n-8) -48*a(n-9) +79*a(n-10) -32*a(n-11) +202*a(n-12) -100*a(n-13) -56*a(n-14) -119*a(n-15) -245*a(n-16) +124*a(n-17) -505*a(n-18) +434*a(n-19) -87*a(n-20) +795*a(n-21) +395*a(n-22) +128*a(n-23) +294*a(n-24) -740*a(n-25) -7*a(n-26) -1167*a(n-27) -505*a(n-28) -466*a(n-29) +93*a(n-30) +751*a(n-31) +373*a(n-32) +754*a(n-33) +315*a(n-34) +265*a(n-35) -70*a(n-36) -377*a(n-37) -310*a(n-38) -267*a(n-39) -27*a(n-40) +4*a(n-41) +15*a(n-43) +43*a(n-44) +47*a(n-45) -10*a(n-47) +a(n-48) +19*a(n-49) +9*a(n-50) -3*a(n-51) -6*a(n-52) -3*a(n-53) for n>60
EXAMPLE
Some solutions for n=4
..2..1..2..2....1..2..0..1....2..0..3..3....0..0..3..0....2..0..3..3
..2..3..1..2....3..0..0..3....1..3..1..3....2..0..1..2....3..3..1..3
..3..1..3..2....2..1..3..2....3..0..3..0....1..3..2..1....2..0..3..0
..2..3..1..3....1..2..0..1....1..3..1..3....0..0..3..0....1..3..1..3
..2..1..3..2....3..0..0..3....2..0..3..0....2..0..1..2....2..0..3..0
..2..3..1..2....2..1..0..2....3..2..1..3....1..3..2..1....0..2..3..2
CROSSREFS
Sequence in context: A167044 A221249 A038544 * A031553 A031733 A185528
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 14 2014
STATUS
approved