login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251888
Number of (n+2) X (2+2) 0..3 arrays with every 3 X 3 subblock row and column sum not 2 3 6 or 7 and every diagonal and antidiagonal sum 2 3 6 or 7.
1
1664, 1232, 602, 530, 594, 790, 1182, 1670, 2474, 3890, 5642, 8594, 13922, 20498, 31778, 52418, 77858, 121922, 203138, 303170, 477314, 799490, 1196162, 1888514, 3171842, 4751618, 7512578, 12635138, 18940418, 29967362, 50436098, 75629570
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = a(n-1) + 6*a(n-3) - 6*a(n-4) - 8*a(n-6) + 8*a(n-7) for n>14.
Empirical g.f.: 2*x*(832 - 216*x - 315*x^2 - 5028*x^3 + 1328*x^4 + 1988*x^5 + 7068*x^6 - 1676*x^7 - 2706*x^8 - 756*x^9 - 332*x^10 - 152*x^11 - 16*x^12 - 16*x^13) / ((1 - x)*(1 - 2*x^3)*(1 - 4*x^3)). - Colin Barker, Nov 30 2018
EXAMPLE
Some solutions for n=4:
..1..0..0..1....0..2..2..0....1..0..3..2....2..0..3..2....0..3..2..3
..2..1..1..2....2..3..3..2....1..1..2..2....2..3..3..2....3..3..2..0
..1..0..0..1....2..3..3..2....2..3..0..1....1..2..2..0....2..2..0..2
..1..0..0..1....0..2..2..1....1..0..3..2....2..3..3..2....3..3..2..3
..2..1..1..3....2..3..3..2....2..2..1..1....2..3..3..2....3..3..2..3
..1..0..0..1....2..3..0..1....1..3..0..2....0..2..2..1....2..2..0..2
CROSSREFS
Column 2 of A251894.
Sequence in context: A340923 A104019 A054810 * A251785 A234976 A303643
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 10 2014
STATUS
approved