login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Numbers n = concat(s,t) such that n = prime(s) + prime(t).
1

%I #16 May 26 2015 19:42:24

%S 254,64581,64582,64611,64612,64626,64676,64698,64706,64711,64712,

%T 64724,2159962,3232398,1998135468,11520892878,17788754556

%N Numbers n = concat(s,t) such that n = prime(s) + prime(t).

%C If we consider the product instead of the sum, n = concat(s,t) = prime(s) * prime(t), then the first terms are 14 and 2127. In fact:

%C 14 = concat(1,4) and prime(1) * prime(4) = 2 * 7 = 14.

%C 2127 = concat(2,127) and prime(2) * prime(127) = 3 * 709 = 2127.

%C a(18) > 8*10^10. - _Giovanni Resta_, May 26 2015

%F n = concat(s,t) = A000040(s) + A000040(t).

%e 254 = concat(2,54) and prime(2) + prime(54) = 3 + 251 = 254.

%e 64581 = concat(6458,1) and prime(6458) + prime(1) = 64579 + 2 = 64581.

%e 64582 = concat(6458,2) and prime(6458) + prime(2) = 64579 + 3 = 64582. Etc.

%p with(numtheory):P:=proc(q) local s,t,k,n;

%p for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if ithprime(s)+ithprime(t)=n

%p then print(n); break; fi; fi; od; od; end: P(10^6);

%p # program from _R. J. Mathar_, Jan 22 2015:

%p isA251860 := proc(n)

%p local ti,i1,i2;

%p if n >= 10 then

%p for ti from 1 to A055642(n)-1 do

%p i1 := modp(n,10^ti) ;

%p i2 := floor(n/10^ti) ;

%p if i1 > 0 and i2 > 0 then

%p if ithprime(i1)+ithprime(i2) = n then

%p return true;

%p end if;

%p end if;

%p end do:

%p false;

%p else

%p false;

%p end if;

%p end proc:

%p for n from 1 do

%p if isA251860(n) then

%p print(n);

%p end if;

%p end do:

%o (PARI) isok(n) = {my(nb = #Str(n)); for (k=1, nb-1, s = n\10^k; t = n % 10^k; if (s && t && prime(s)+ prime(t) == n, return (1));); return (0);} \\ _Michel Marcus_, Dec 10 2014

%Y Cf. A000040, A249766.

%K nonn,base,more

%O 1,1

%A _Paolo P. Lava_, Dec 10 2014

%E a(13)-a(17) from _Giovanni Resta_, May 26 2015