login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251860
Numbers n = concat(s,t) such that n = prime(s) + prime(t).
1
254, 64581, 64582, 64611, 64612, 64626, 64676, 64698, 64706, 64711, 64712, 64724, 2159962, 3232398, 1998135468, 11520892878, 17788754556
OFFSET
1,1
COMMENTS
If we consider the product instead of the sum, n = concat(s,t) = prime(s) * prime(t), then the first terms are 14 and 2127. In fact:
14 = concat(1,4) and prime(1) * prime(4) = 2 * 7 = 14.
2127 = concat(2,127) and prime(2) * prime(127) = 3 * 709 = 2127.
a(18) > 8*10^10. - Giovanni Resta, May 26 2015
FORMULA
n = concat(s,t) = A000040(s) + A000040(t).
EXAMPLE
254 = concat(2,54) and prime(2) + prime(54) = 3 + 251 = 254.
64581 = concat(6458,1) and prime(6458) + prime(1) = 64579 + 2 = 64581.
64582 = concat(6458,2) and prime(6458) + prime(2) = 64579 + 3 = 64582. Etc.
MAPLE
with(numtheory):P:=proc(q) local s, t, k, n;
for n from 1 to q do for k from 1 to ilog10(n) do s:=n mod 10^k; t:=trunc(n/10^k); if s*t>0 then if ithprime(s)+ithprime(t)=n
then print(n); break; fi; fi; od; od; end: P(10^6);
# program from R. J. Mathar, Jan 22 2015:
isA251860 := proc(n)
local ti, i1, i2;
if n >= 10 then
for ti from 1 to A055642(n)-1 do
i1 := modp(n, 10^ti) ;
i2 := floor(n/10^ti) ;
if i1 > 0 and i2 > 0 then
if ithprime(i1)+ithprime(i2) = n then
return true;
end if;
end if;
end do:
false;
else
false;
end if;
end proc:
for n from 1 do
if isA251860(n) then
print(n);
end if;
end do:
PROG
(PARI) isok(n) = {my(nb = #Str(n)); for (k=1, nb-1, s = n\10^k; t = n % 10^k; if (s && t && prime(s)+ prime(t) == n, return (1)); ); return (0); } \\ Michel Marcus, Dec 10 2014
CROSSREFS
Sequence in context: A195859 A250566 A278155 * A145715 A145587 A283188
KEYWORD
nonn,base,more
AUTHOR
Paolo P. Lava, Dec 10 2014
EXTENSIONS
a(13)-a(17) from Giovanni Resta, May 26 2015
STATUS
approved