login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251853
Nonnegative numbers n with all even digits such that the digital sum of the digits' sum is even.
1
0, 2, 4, 6, 8, 20, 22, 24, 26, 40, 42, 44, 60, 62, 80, 200, 202, 204, 206, 220, 222, 224, 240, 242, 260, 400, 402, 404, 420, 422, 440, 488, 600, 602, 620, 668, 686, 688, 800, 848, 866, 868, 884, 886, 888, 2000, 2002, 2004, 2006, 2020, 2022, 2024, 2040, 2042, 2060, 2200
OFFSET
1,2
LINKS
FORMULA
Each digit in n is divisible by two, n is divisible by 2, the sum S of the digits of n is divisible by 2, and the sum of the digits of S is also divisible by 2.
EXAMPLE
2288 is in the sequence because it is even, 2 and 8 are even, 2 + 2 + 8 + 8 = 20 is even, and 2 + 0 = 2 is even.
MATHEMATICA
a251853[n_Integer] := Module[{digitSum}, digitSum[x_] := Plus @@ IntegerDigits[x]; Select[Range[n], And[And @@ EvenQ@IntegerDigits[#], EvenQ@digitSum[#], EvenQ@Nest[digitSum, #, 2]] &]]; a251853[2200] (* Michael De Vlieger, Dec 11 2014 *)
PROG
(PARI) isevend(v) = for (i=1, #v, if (v[i] % 2, return (0))); return (1);
isok(n) = isevend(digits(n)) && ((sumdigits(sumdigits(n)) % 2) == 0); \\ Michel Marcus, Dec 11 2014
(Sage)
[x for x in [0..2200] if prod([is_even(i) for i in x.digits()]) and sum(Integer(sum(x.digits())).digits())%2==0] # Tom Edgar, Dec 10 2014
(Python)
A251853_list = [int(''.join(d)) for d in product('02468', repeat=4) if not sum(int(y) for y in str(sum(int(x) for x in d))) % 2] # Chai Wah Wu, Dec 20 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Chase Fortier, Dec 09 2014
STATUS
approved