Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #16 Mar 02 2016 11:34:43
%S 0,13,450,15295,519588,17650705,599604390,20368898563,691942946760,
%T 23505691291285,798501560956938,27125547381244615,921470109401359980,
%U 31302858172264994713,1063375707747608460270,36123471205246422654475
%N Numbers n such that hexagonal numbers H(n) and H(n+1) sum to another hexagonal number.
%C Also nonnegative integers x in the solutions to 8*x^2-4*y^2+4*x+2*y+2 = 0, the corresponding values of y being A251602.
%H Colin Barker, <a href="/A251601/b251601.txt">Table of n, a(n) for n = 1..654</a>
%H <a href="/index/Rec#order_03">Index entries for linear recurrences with constant coefficients</a>, signature (35,-35,1).
%F a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
%F G.f.: x^2*(5*x-13) / ((x-1)*(x^2-34*x+1)).
%F a(n) = (-4+(17+12*sqrt(2))^n*(-38+27*sqrt(2))-(17+12*sqrt(2))^(-n)*(38+27*sqrt(2)))/16. - _Colin Barker_, Mar 02 2016
%e 13 is in the sequence because H(13) + H(14) = 325 + 378 = 703 = H(19).
%o (PARI) concat(0, Vec(x^2*(5*x-13)/((x-1)*(x^2-34*x+1)) + O(x^20)))
%Y Cf. A000384, A251602.
%K nonn,easy
%O 1,2
%A _Colin Barker_, Dec 05 2014