login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251601
Numbers n such that hexagonal numbers H(n) and H(n+1) sum to another hexagonal number.
2
0, 13, 450, 15295, 519588, 17650705, 599604390, 20368898563, 691942946760, 23505691291285, 798501560956938, 27125547381244615, 921470109401359980, 31302858172264994713, 1063375707747608460270, 36123471205246422654475
OFFSET
1,2
COMMENTS
Also nonnegative integers x in the solutions to 8*x^2-4*y^2+4*x+2*y+2 = 0, the corresponding values of y being A251602.
FORMULA
a(n) = 35*a(n-1) - 35*a(n-2) + a(n-3).
G.f.: x^2*(5*x-13) / ((x-1)*(x^2-34*x+1)).
a(n) = (-4+(17+12*sqrt(2))^n*(-38+27*sqrt(2))-(17+12*sqrt(2))^(-n)*(38+27*sqrt(2)))/16. - Colin Barker, Mar 02 2016
EXAMPLE
13 is in the sequence because H(13) + H(14) = 325 + 378 = 703 = H(19).
PROG
(PARI) concat(0, Vec(x^2*(5*x-13)/((x-1)*(x^2-34*x+1)) + O(x^20)))
CROSSREFS
Sequence in context: A012832 A102075 A218586 * A338177 A166184 A272656
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Dec 05 2014
STATUS
approved