OFFSET
1,2
COMMENTS
Conjectured to be a permutation of the natural numbers.
REFERENCES
L. Edson Jeffery, Posting to Sequence Fans Mailing List, Dec 01 2014
LINKS
N. J. A. Sloane, Table of n, a(n) for n = 1..11945
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015.
MATHEMATICA
max = 57; f = True; a = {1, 3, 5}; NN = Range[4, 1000]; s = 2*NN - 1; While[TrueQ[f], For[k = 1, k <= Length[s], k++, If[Length[a] < max, If[GCD[a[[-1]], s[[k]]] == 1 && GCD[a[[-2]], s[[k]]] > 1, a = Append[a, s[[k]]]; s = Delete[s, k]; k = 0; Break], f = False]]]; Table[(a[[n]] + 1)/2, {n, max}] (* L. Edson Jeffery, Dec 02 2014 *)
PROG
(Python)
from __future__ import division
from math import gcd
A251414_list, l1, l2, s, b = [1, 2, 3], 5, 3, 7, {}
for _ in range(1, 10**2):
i = s
while True:
if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1:
A251414_list.append((i+1)//2)
l2, l1, b[i] = l1, i, True
while s in b:
b.pop(s)
s += 2
break
i += 2 # Chai Wah Wu, Dec 07 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2014
STATUS
approved