login
A251414
a(n) = (A251413(n) + 1)/2.
3
1, 2, 3, 5, 13, 11, 28, 4, 6, 18, 17, 25, 8, 39, 14, 46, 23, 7, 26, 33, 9, 20, 43, 29, 58, 10, 12, 48, 35, 63, 32, 73, 41, 15, 38, 102, 47, 60, 16, 53, 171, 44, 61, 56, 72, 19, 50, 93, 59, 78, 62, 88, 21, 67, 103, 74, 108, 71, 22, 24, 65, 118, 77, 123, 80, 81
OFFSET
1,2
COMMENTS
Conjectured to be a permutation of the natural numbers.
REFERENCES
L. Edson Jeffery, Posting to Sequence Fans Mailing List, Dec 01 2014
LINKS
David L. Applegate, Hans Havermann, Bob Selcoe, Vladimir Shevelev, N. J. A. Sloane, and Reinhard Zumkeller, The Yellowstone Permutation, arXiv preprint arXiv:1501.01669, 2015.
MATHEMATICA
max = 57; f = True; a = {1, 3, 5}; NN = Range[4, 1000]; s = 2*NN - 1; While[TrueQ[f], For[k = 1, k <= Length[s], k++, If[Length[a] < max, If[GCD[a[[-1]], s[[k]]] == 1 && GCD[a[[-2]], s[[k]]] > 1, a = Append[a, s[[k]]]; s = Delete[s, k]; k = 0; Break], f = False]]]; Table[(a[[n]] + 1)/2, {n, max}] (* L. Edson Jeffery, Dec 02 2014 *)
PROG
(Python)
from __future__ import division
from math import gcd
A251414_list, l1, l2, s, b = [1, 2, 3], 5, 3, 7, {}
for _ in range(1, 10**2):
i = s
while True:
if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1:
A251414_list.append((i+1)//2)
l2, l1, b[i] = l1, i, True
while s in b:
b.pop(s)
s += 2
break
i += 2 # Chai Wah Wu, Dec 07 2014
CROSSREFS
Sequence in context: A236394 A111239 A264745 * A145343 A058592 A268509
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 02 2014
STATUS
approved