login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A251328
Number of (n+1) X (1+1) 0..2 arrays with every 2 X 2 subblock summing to 2 4 or 6.
1
39, 171, 753, 3333, 14823, 66219, 297057, 1337733, 6045495, 27408747, 124625745, 568146309, 2596130823, 11887635627, 54533628609, 250576195845, 1153020767319, 5312272049259, 24501992068785, 113120150702085, 522688044131367
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = 8*a(n-1) - 13*a(n-2) - 12*a(n-3).
Conjectures from Colin Barker, Nov 29 2018: (Start)
G.f.: 3*x*(13 - 47*x - 36*x^2) / ((1 - 4*x)*(1 - 4*x - 3*x^2)).
a(n) = (7*2^(3+2*n) + (35-13*sqrt(7))*(2-sqrt(7))^n + (2+sqrt(7))^n*(35+13*sqrt(7))) / 14.
(End)
EXAMPLE
Some solutions for n=4:
..2..0....2..0....2..1....0..1....1..2....1..1....2..0....2..2....2..0....0..0
..1..1....0..2....2..1....2..1....0..1....1..1....1..1....0..2....1..1....2..0
..1..1....0..0....1..0....0..1....1..0....1..1....0..2....2..0....1..1....2..2
..0..0....1..1....1..2....1..2....2..1....0..2....0..2....0..2....0..0....1..1
..2..2....0..2....1..2....1..2....1..2....0..2....2..2....2..0....1..1....0..0
CROSSREFS
Column 1 of A251335.
Sequence in context: A158598 A105838 A251335 * A235981 A235974 A258095
KEYWORD
nonn
AUTHOR
R. H. Hardin, Dec 01 2014
STATUS
approved