The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A250917 E.g.f.: exp( x*C(x)^3 ) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, A000108. 1
 1, 1, 7, 73, 1033, 18541, 403831, 10351237, 305355793, 10192132153, 379819484551, 15634219476481, 704566985120857, 34506514429777573, 1825081888365736183, 103685565729559782781, 6297505655719537293601, 407233553972252986277617, 27935786938445348562454663 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS In general, if k>0 and e.g.f. = exp(x*C(x)^k) where C(x) = (1 - sqrt(1-4*x))/(2*x) is the g.f. of the Catalan numbers, then a(n) ~ k * 2^(2*n + k - 5/2) * n^(n-1) / exp(n - 2^(k-2)). - Vaclav Kotesovec, Aug 22 2017 LINKS Table of n, a(n) for n=0..18. FORMULA a(n) = Sum_{k=0..n} n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) for n>0 with a(0)=1. a(n) ~ 3 * 2^(2*n+1/2) * n^(n-1) / exp(n-2). - Vaclav Kotesovec, Aug 22 2017 Conjecture D-finite with recurrence: +2*a(n) +(-11*n+20)*a(n-1) +(n^3+9*n^2-116*n+164)*a(n-2) +(-4*n^4+35*n^3+n^2-317*n+342)*a(n-3) -6*(n-3)*(6*n^3-50*n^2+147*n-176)*a(n-4) +12*(n-5)*(2*n-9)*(n-3)*(n-4)*a(n-5)=0. - R. J. Mathar, Jan 25 2020 EXAMPLE E.g.f.: A(x) = 1 + x + 7*x^2/2! + 73*x^3/3! + 1033*x^4/4! + 18541*x^5/5! +... such that log(A(x)) = x*C(x)^3, log(A(x)) = x + 3*x^2 + 9*x^3 + 28*x^4 + 90*x^5 + 297*x^6 + 1001*x^7 +... where C(x) = 1 + x*C(x)^2 is the g.f. of A000108. PROG (PARI) {a(n)=local(C=1); for(i=1, n, C=1+x*C^2 +x*O(x^n)); n!*polcoeff(exp(x*C^3), n)} for(n=0, 20, print1(a(n), ", ")) (PARI) {a(n) = if(n==0, 1, sum(k=0, n, n!/k! * binomial(2*n+k-1, n-k) * 3*k/(n+2*k) ))} for(n=0, 20, print1(a(n), ", ")) CROSSREFS Cf. A251568, A000108, A001517. Sequence in context: A321837 A050352 A261783 * A112939 A058350 A048174 Adjacent sequences: A250914 A250915 A250916 * A250918 A250919 A250920 KEYWORD nonn AUTHOR Paul D. Hanna, Dec 06 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 13 20:16 EDT 2024. Contains 371645 sequences. (Running on oeis4.)