login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250755
T(n,k)=Number of (n+1)X(k+1) 0..2 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nondecreasing x(i,j)+x(i-1,j) in the j direction
15
32, 72, 105, 129, 237, 332, 203, 423, 756, 1029, 294, 663, 1353, 2361, 3152, 402, 957, 2123, 4239, 7272, 9585, 527, 1305, 3066, 6663, 13089, 22197, 29012, 669, 1707, 4182, 9633, 20603, 40023, 67356, 87549, 828, 2163, 5471, 13149, 29814, 63063, 121593
OFFSET
1,1
COMMENTS
Table starts
.....32......72.....129.....203.....294......402......527......669......828
....105.....237.....423.....663.....957.....1305.....1707.....2163.....2673
....332.....756....1353....2123....3066.....4182.....5471.....6933.....8568
...1029....2361....4239....6663....9633....13149....17211....21819....26973
...3152....7272...13089...20603...29814....40722....53327....67629....83628
...9585...22197...40023...63063...91317...124785...163467...207363...256473
..29012...67356..121593..191723..277746...379662...497471...631173...780768
..87549..203601..367839..580263..840873..1149669..1506651..1911819..2365173
.263672..613872.1109649.1751003.2537934..3470442..4548527..5772189..7141428
.793065.1847757.3341223.5273463.7644477.10454265.13702827.17390163.21516273
LINKS
FORMULA
Empirical: T(n,k) = (3*(k+1)*(5*k+4)*3^n - (8*k^2+8*k)*2^n + (5*k^2-7*k))/4
Empirical for column k:
k=1: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (27*3^n-8*2^n-1)/2
k=2: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (63*3^n-24*2^n+3)/2
k=3: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (114*3^n-48*2^n+12)/2
k=4: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (180*3^n-80*2^n+26)/2
k=5: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (261*3^n-120*2^n+45)/2
k=6: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (357*3^n-168*2^n+69)/2
k=7: a(n) = 6*a(n-1) -11*a(n-2) +6*a(n-3); a(n) = (468*3^n-224*2^n+98)/2
Empirical for row n:
n=1: a(n) = (17/2)*n^2 + (29/2)*n + 9
n=2: a(n) = 27*n^2 + 51*n + 27
n=3: a(n) = (173/2)*n^2 + (329/2)*n + 81
n=4: a(n) = 273*n^2 + 513*n + 243
n=5: a(n) = (1697/2)*n^2 + (3149/2)*n + 729
n=6: a(n) = 2607*n^2 + 4791*n + 2187
n=7: a(n) = (15893/2)*n^2 + (29009/2)*n + 6561
EXAMPLE
Some solutions for n=4 k=4
..1..1..1..1..0....0..0..0..0..0....0..0..0..0..0....0..0..0..0..0
..1..1..1..1..2....2..2..2..2..2....1..1..1..1..1....0..0..0..0..0
..1..1..1..1..2....0..0..0..0..0....0..0..0..0..0....1..1..1..1..1
..0..1..1..1..2....1..1..1..2..2....2..2..2..2..2....0..0..2..2..2
..0..1..1..1..2....0..0..0..1..2....0..1..1..1..2....0..0..2..2..2
CROSSREFS
Column 1 is A053152(n+3)
Sequence in context: A228665 A101539 A106700 * A216427 A104026 A216417
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 27 2014
STATUS
approved