login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250742
T(n,k)=Number of (n+1)X(k+1) 0..1 arrays with nondecreasing x(i,j)-x(i,j-1) in the i direction and nonincreasing x(i,j)-x(i-1,j) in the j direction
6
6, 10, 10, 18, 14, 18, 34, 22, 22, 34, 66, 38, 30, 38, 66, 130, 70, 46, 46, 70, 130, 258, 134, 78, 62, 78, 134, 258, 514, 262, 142, 94, 94, 142, 262, 514, 1026, 518, 270, 158, 126, 158, 270, 518, 1026, 2050, 1030, 526, 286, 190, 190, 286, 526, 1030, 2050, 4098, 2054, 1038
OFFSET
1,1
COMMENTS
Table starts
....6...10...18...34...66..130..258..514.1026.2050.4098..8194.16386.32770.65538
...10...14...22...38...70..134..262..518.1030.2054.4102..8198.16390.32774.65542
...18...22...30...46...78..142..270..526.1038.2062.4110..8206.16398.32782.65550
...34...38...46...62...94..158..286..542.1054.2078.4126..8222.16414.32798.65566
...66...70...78...94..126..190..318..574.1086.2110.4158..8254.16446.32830.65598
..130..134..142..158..190..254..382..638.1150.2174.4222..8318.16510.32894.65662
..258..262..270..286..318..382..510..766.1278.2302.4350..8446.16638.33022.65790
..514..518..526..542..574..638..766.1022.1534.2558.4606..8702.16894.33278.66046
.1026.1030.1038.1054.1086.1150.1278.1534.2046.3070.5118..9214.17406.33790.66558
.2050.2054.2062.2078.2110.2174.2302.2558.3070.4094.6142.10238.18430.34814.67582
LINKS
FORMULA
The constraints apparently result in horizontally or vertically banded arrays, hence:
Empirical: T(n,k) = 2^(k+1)+2^(n+1)-2
Empirical for column k:
k=1: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +2
k=2: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +6
k=3: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +14
k=4: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +30
k=5: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +62
k=6: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +126
k=7: a(n) = 3*a(n-1) -2*a(n-2); a(n) = 2^(n+1) +254
EXAMPLE
Some solutions for n=4 k=4
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
..0..0..0..0..0....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....0..0..0..0..0
..1..1..1..1..1....1..0..1..0..1....0..1..0..0..1....1..1..1..1..1
CROSSREFS
Column 1 is A052548(n+1)
Column 2 is A153972(n+1)
Diagonal is A000918(n+2)
Sequence in context: A024746 A111093 A144394 * A315122 A087873 A284238
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Nov 27 2014
STATUS
approved