login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A250328
Denominator of the harmonic mean of the first n pentagonal numbers.
4
1, 3, 77, 877, 6271, 36049, 36423, 422137, 49691099, 1448086909, 11631128477, 2334008785, 44471893747, 1827784004699, 832564679309, 39202882860913, 196334425398149, 3473612060358899, 3478128507653999, 205449856947685261, 303604578504856471
OFFSET
1,2
COMMENTS
a(n+1) is, for n >= 0, also the numerator of the partial sums of the reciprocals of twice the pentagonal numbers {A049450(k+1)}_{k>=0} with the denominators given in A294513(n) (assuming that A250327(n+1)/(n+1) = A294513(n)/2). - Wolfdieter Lang, Nov 02 2017
LINKS
EXAMPLE
a(3) = 77 because the pentagonal numbers A000326(n), for n = 1,2,3 are 1, 5, 12 and 3/(1/1+1/5+1/12) = 180/77.
MATHEMATICA
With[{s = Array[PolygonalNumber[5, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 02 2017 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, (3*i^2-i)/2)))); s
CROSSREFS
Cf. A000326, A250327 (numerators).
Sequence in context: A054950 A335722 A183961 * A306432 A303096 A324307
KEYWORD
nonn,frac,easy
AUTHOR
Colin Barker, Nov 18 2014
STATUS
approved