login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250328
Denominator of the harmonic mean of the first n pentagonal numbers.
4
1, 3, 77, 877, 6271, 36049, 36423, 422137, 49691099, 1448086909, 11631128477, 2334008785, 44471893747, 1827784004699, 832564679309, 39202882860913, 196334425398149, 3473612060358899, 3478128507653999, 205449856947685261, 303604578504856471
OFFSET
1,2
COMMENTS
a(n+1) is, for n >= 0, also the numerator of the partial sums of the reciprocals of twice the pentagonal numbers {A049450(k+1)}_{k>=0} with the denominators given in A294513(n) (assuming that A250327(n+1)/(n+1) = A294513(n)/2). - Wolfdieter Lang, Nov 02 2017
LINKS
EXAMPLE
a(3) = 77 because the pentagonal numbers A000326(n), for n = 1,2,3 are 1, 5, 12 and 3/(1/1+1/5+1/12) = 180/77.
MATHEMATICA
With[{s = Array[PolygonalNumber[5, #] &, 21]}, Denominator@ Array[HarmonicMean@ Take[s, #] &, Length@ s]] (* Michael De Vlieger, Nov 02 2017 *)
PROG
(PARI)
harmonicmean(v) = #v / sum(k=1, #v, 1/v[k])
s=vector(30); for(k=1, #s, s[k]=denominator(harmonicmean(vector(k, i, (3*i^2-i)/2)))); s
CROSSREFS
Cf. A000326, A250327 (numerators).
Sequence in context: A054950 A335722 A183961 * A306432 A303096 A324307
KEYWORD
nonn,frac,easy
AUTHOR
Colin Barker, Nov 18 2014
STATUS
approved