login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A250269
Primitive part of n! (for n>=1): n! = Product_{d|n} a(d).
4
1, 2, 6, 12, 120, 60, 5040, 1680, 60480, 15120, 39916800, 55440, 6227020800, 8648640, 1816214400, 518918400, 355687428096000, 147026880, 121645100408832000, 55870214400, 1689515283456000, 14079294028800, 25852016738884976640000, 771008958720
OFFSET
1,2
COMMENTS
The title is analogous to the title of A061446.
For any integer sequence a, the sequence b such that b(n) = Product_{d|n} a(d) is a divisibility sequence. Not every divisibility sequence b corresponds to some integer sequence a such that b(n) = Product_{d|n} a(d), however.
This sequence is not itself a divisibility sequence; a(15) does not divide a(30), for example.
LINKS
Morgan Ward, A note on divisibility sequences, Bull. Amer. Math. Soc., 45 (1939), 334-336.
FORMULA
a(n) = Product_{i = 1..n, gcd(n, i) = 1} lcm (1..floor(n/i)).
a(n) = Product_{i = 1..floor(n/2), gcd(n, i) = 1} lcm (1..floor(n/i)) (equivalent formula).
a(n) = n! iff n is prime.
a(n) = Product_{d|n} (d!)^moebius(n/d). - Joerg Arndt, Jan 18 2015
a(n) = Product_{k=1..n} (gcd(n,k)!)^(mu(n/gcd(n,k))/phi(n/gcd(n,k))) = Product_{k=1..n} ((n/gcd(n,k))!)^(mu(gcd(n,k))/phi(n/gcd(n,k))) where mu = A008683, phi = A000010. - Richard L. Ollerton, Nov 08 2021
EXAMPLE
The divisors of 10 are 1, 2, 5 and 10. 10! = a(1) * a(2) * a(5) * a(10) = 1 * 2 * 120 * 15120 = 3628800.
Between 1 and 10 inclusive, 4 integers are coprime to 10: 1, 3, 7 and 9. Let b(n) = lcm (1...n) = A003418(n), and let [x] denote the floor function. Then:
a(10) = b[10/1] * b[10/3] * b[10/7] * b[10/9]
" " = b(10) * b(3) * b(1) * b(1)
" " = 2520 * 6 * 1 * 1
" " = 15120.
MATHEMATICA
Array[Product[(d!)^MoebiusMu[#/d], {d, Divisors[#]}] &, 24] (* Michael De Vlieger, Nov 11 2021 *)
PROG
(PARI) a(n)={my(r=1); fordiv(n, d, r*=d!^moebius(n/d)); r} \\ Joerg Arndt, Jan 18 2015
CROSSREFS
Cf. A000142, A075071. Subsequence of A250270.
Cf. A000010 (comments on product formulas), A008683.
Sequence in context: A144098 A259140 A075071 * A193987 A089423 A062349
KEYWORD
nonn
AUTHOR
Matthew Vandermast, Dec 16 2014
STATUS
approved