|
|
A250238
|
|
Fundamental discriminants d uniquely characterizing all complex biquadratic fields Q(sqrt(-3),sqrt(d)) which have 3-class group of type (3,3) and second 3-class group isomorphic to SmallGroup(81,9).
|
|
7
|
|
|
469, 1489, 1708, 1937, 2557, 2941, 2981, 3021, 3173, 3305, 3580, 3592, 3736
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,1
|
|
COMMENTS
|
For the discriminants d in A250238, the 3-class field tower of K=Q(sqrt(-3),sqrt(d)) has exactly two stages and the second 3-class group G of K is given by the metabelian 3-group G=SmallGroup(81,9) with transfer kernel type a.1, (0,0,0,0), transfer target type [(3,9),(3,3)^3] and coclass 1. Actually, this is the ground state on the coclass-1 graph.
The reason the 3-class field tower of K must stop at the second Hilbert 3-class field is Blackburn's Theorem on two-generated 3-groups G whose commutator subgroup G' also has two generators. In fact, the group G=SmallGroup(81,9) has two-generated commutator subgroup G' of type (3,3).
|
|
REFERENCES
|
H. U. Besche, B. Eick, and E. A. O'Brien, The SmallGroups Library - a Library of Groups of Small Order, 2005, an accepted and refereed GAP 4 package, available also in MAGMA.
|
|
LINKS
|
|
|
PROG
|
(Magma)SetClassGroupBounds("GRH"); for n := 469 to 10000 do cnd := false; if (1 eq n mod 4) and IsSquarefree(n) then cnd := true; end if; if (0 eq n mod 4) then r := n div 4; if IsSquarefree(r) and ((2 eq r mod 4) or (3 eq r mod 4)) then cnd := true; end if; end if; if (true eq cnd) then R := QuadraticField(n); E := QuadraticField(-3); K := Compositum(R, E); C, mC := ClassGroup(K); if ([3, 3] eq pPrimaryInvariants(C, 3)) then s := Subgroups(C: Quot := [3]); a := [AbelianExtension(Inverse(mq)*mC) where _, mq := quo<C|x`subgroup> : x in s]; b := [NumberField(x) : x in a]; d := [MaximalOrder(x) : x in a]; b := [AbsoluteField(x) : x in b]; c := [MaximalOrder(x) : x in b]; c := [OptimizedRepresentation(x) : x in b]; b := [NumberField(DefiningPolynomial(x)) : x in c]; a := [Simplify(LLL(MaximalOrder(x))) : x in b]; if IsNormal(b[2]) then H := Compositum(NumberField(a[1]), NumberField(a[2])); else H := Compositum(NumberField(a[1]), NumberField(a[3])); end if; O := MaximalOrder(H); CH := ClassGroup(LLL(O)); if ([3, 3] eq pPrimaryInvariants(CH, 3)) then n, ", "; end if; end if; end if; end for;
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,hard,more
|
|
AUTHOR
|
|
|
STATUS
|
approved
|
|
|
|