

A250154


T(n,k)=Number of length n+6 0..k arrays with every seven consecutive terms having the maximum of some two terms equal to the minimum of the remaining five terms


15



107, 1452, 193, 9160, 3450, 354, 37805, 26710, 8377, 654, 119391, 129595, 79740, 20513, 1212, 313852, 468231, 455055, 240144, 50228, 2248, 722072, 1382188, 1879526, 1611449, 721644, 122228, 4166, 1501425, 3522460, 6219899, 7601062
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

Table starts
...107....1452......9160......37805......119391.......313852.......722072
...193....3450.....26710.....129595......468231......1382188......3522460
...354....8377.....79740.....455055.....1879526......6219899.....17519352
...654...20513....240144....1611449.....7601062.....28153337.....87461488
..1212...50228....721644....5682771....30540568....126272510....431428872
..2248..122228...2144132...19726379...120228940....552269862...2065373112
..4166..293972...6242596...66600911...456748018...2312181994...9388944776
..7702..694228..17629584..215884055..1647466166...9084404402..39584158608
.14270.1665492..51324016..733377115..6339887238..38812476262.185122408752
.26488.4027873.150838232.2521174765.24740345120.168394122957.879922285648


LINKS

R. H. Hardin, Table of n, a(n) for n = 1..2492


FORMULA

Empirical for column k:
k=1: [linear recurrence of order 42]
Empirical for row n:
n=1: a(n) = (7/2)*n^6 + 14*n^5 + (105/4)*n^4 + (63/2)*n^3 + (91/4)*n^2 + 8*n + 1
n=2: [polynomial of degree 7]
n=3: [polynomial of degree 8]
n=4: [polynomial of degree 9]
n=5: [polynomial of degree 10]
n=6: [polynomial of degree 11]
n=7: [polynomial of degree 11]


EXAMPLE

Some solutions for n=3 k=4
..0....0....0....0....0....1....0....0....1....0....1....1....0....1....0....0
..3....1....1....4....2....1....1....3....0....2....0....1....1....0....4....3
..3....3....1....0....0....0....1....3....2....0....0....1....0....0....1....1
..4....1....1....0....0....0....0....3....0....0....2....1....0....1....1....3
..1....3....1....3....3....2....1....4....1....4....2....1....2....4....1....2
..1....4....2....1....2....0....0....0....3....0....1....3....1....0....2....1
..4....1....1....2....0....2....1....0....0....1....0....4....2....0....3....4
..0....0....1....0....4....3....0....0....0....2....0....2....0....4....1....1
..3....2....0....0....4....0....3....4....2....0....1....4....3....0....2....0


CROSSREFS

Sequence in context: A059258 A212377 A113932 * A250155 A240596 A185677
Adjacent sequences: A250151 A250152 A250153 * A250155 A250156 A250157


KEYWORD

nonn,tabl


AUTHOR

R. H. Hardin, Nov 13 2014


STATUS

approved



