OFFSET
1,1
COMMENTS
All the terms in the sequence, except a(1), are congruent to 1 mod 6.
LINKS
K. D. Bajpai, Table of n, a(n) for n = 1..3525
EXAMPLE
107 is prime and appears in the sequence because 107 = (3*5*7)+2.
4201 is prime and appears in the sequence because 4201 = (13*17*19)+2.
MAPLE
KD := proc() local a, b; a:=ithprime(n)*ithprime(n+1)*ithprime(n+2); b:=a+2; if isprime(b) then RETURN (b); fi; end: seq(KD(), n=1..1000);
MATHEMATICA
Select[Table[Prime[k]*Prime[k+1]*Prime[k+2]+2, {k, 1, 300}], PrimeQ]
Select[Times@@@Partition[Prime[Range[600]], 3, 1]+2, PrimeQ] (* Harvey P. Dale, Nov 21 2018 *)
PROG
(PARI) s=[]; for(k=1, 1000, t=prime(k)*prime(k+1)*prime(k+2)+2; if(isprime(t), s=concat(s, t))); s \\ Colin Barker, Apr 09 2014
CROSSREFS
KEYWORD
nonn
AUTHOR
K. D. Bajpai, Apr 08 2014
STATUS
approved