login
A250127
Numbers n where A098550(n)/n reaches a new high-water mark.
2
1, 5, 7, 11, 13, 103, 177, 206, 684, 1138, 1368, 1817, 2046, 2270, 2485, 4959, 7411, 19616, 22061, 24482, 31776, 220238, 314155, 345422, 376714, 532978, 1592947, 3707718, 4235919, 4763906, 6874759, 7929554, 8984063, 9511273
OFFSET
1,2
EXAMPLE
The record values of A098550(n)/n at these points are 1, 9/5, 15/7, 25/11, 35/13, 329/103, 581/177, 679/206, 3443/684, 5753/1138, 6941/1368, 9229/1817, 947/186, 11561/2270, 14963/2485, 30043/4959, 45071/7411, 120107/19616, 10399/1697, 150137/24482, 255221/31776, 1786819/220238, 2552567/314155, 2807737/345422, 3063077/376714, 4849921/532978, ...
The corresponding list of pairs [n, A098550(n)/n] is:
[1, 1.], [5, 1.800000000], [7, 2.142857143], [11, 2.272727273], [13, 2.692307692], [103, 3.194174757], [177, 3.282485876], [206, 3.296116505], [684, 5.033625731], [1138, 5.055360281], [1368, 5.073830409], [1817, 5.079251513], [2046, 5.091397849], [2270, 5.092951542], [2485, 6.021327968], [4959, 6.058277879], [7411, 6.081635407], [19616, 6.122909869], [22061, 6.127872717], [24482, 6.132546361], [31776, 8.031879406], [220238, 8.113127616], [314155, 8.125183428], [345422, 8.128425520], [376714, 8.131041055], [532978, 9.099664526], ...
It would be nice to know what curve these points lie on.
PROG
(Python)
from fractions import gcd
A250127_list, l1, l2, s, u, l, b = [1], 3, 2, 4, 1, 1, {}
for n in range(4, 10**4):
....i = s
....while True:
........if not i in b and gcd(i, l1) == 1 and gcd(i, l2) > 1:
............l2, l1, b[i] = l1, i, 1
............while s in b:
................b.pop(s)
................s += 1
............if u*n < i*l:
................A250127_list.append(n)
................u, l = i, n
............break
........i += 1 # Chai Wah Wu, Dec 06 2014
CROSSREFS
Cf. A098550. See A251415 for the values of A098550 at these points.
Sequence in context: A339953 A220951 A136055 * A181494 A125293 A354164
KEYWORD
nonn,more
AUTHOR
N. J. A. Sloane, Dec 02 2014
EXTENSIONS
a(23)-a(26) and extended example section by Chai Wah Wu, Dec 06 2014
a(27)-a(34) from David Applegate, Dec 18 2014
STATUS
approved