login
A249965
Number of length 5+5 0..n arrays with no six consecutive terms having the maximum of any two terms equal to the minimum of the remaining four terms.
1
15, 2825, 100236, 1447334, 12123567, 70617807, 317518832, 1176570012, 3753186183, 10625460549, 27293238764, 64668634914, 143140038743, 298924843947, 593647442496, 1128342108536, 2063388866271, 3646247928129
OFFSET
1,1
COMMENTS
Row 5 of A249960.
LINKS
FORMULA
Empirical: a(n) = n^10 + (4/45)*n^9 + (31/6)*n^8 + (634/315)*n^7 - (21/20)*n^6 + (761/90)*n^5 - (19/12)*n^4 - (21/10)*n^3 + (119/30)*n^2 - (67/70)*n.
Conjectures from Colin Barker, Aug 21 2017: (Start)
G.f.: x*(15 + 2660*x + 69986*x^2 + 497638*x^3 + 1254698*x^4 + 1248320*x^5 + 488690*x^6 + 65078*x^7 + 1715*x^8) / (1 - x)^11.
a(n) = 11*a(n-1) - 55*a(n-2) + 165*a(n-3) - 330*a(n-4) + 462*a(n-5) - 462*a(n-6) + 330*a(n-7) - 165*a(n-8) + 55*a(n-9) - 11*a(n-10) + a(n-11) for n>11.
(End)
EXAMPLE
Some solutions for n=3:
..3....3....3....1....1....1....3....2....0....2....1....2....1....0....1....0
..2....0....2....2....2....1....3....2....3....0....0....1....1....1....3....0
..2....3....3....0....3....2....0....0....1....0....3....2....0....3....2....3
..0....1....1....2....0....0....3....2....0....2....2....2....3....2....0....2
..0....3....3....2....0....0....0....3....2....1....0....1....3....3....3....2
..2....3....1....0....2....2....3....1....2....2....1....3....0....3....3....3
..3....0....3....3....3....3....3....0....2....3....3....3....1....3....1....0
..3....0....3....1....3....1....2....2....2....0....3....0....2....1....3....0
..3....2....3....0....3....2....1....0....1....3....3....0....2....3....3....3
..3....2....1....1....3....0....2....2....0....0....0....2....0....0....0....1
CROSSREFS
Sequence in context: A232407 A208404 A208411 * A108281 A232455 A208579
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 09 2014
STATUS
approved