login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249884
Number of length 1+6 0..n arrays with no seven consecutive terms having the maximum of any three terms equal to the minimum of the remaining four terms.
1
35, 805, 7420, 40740, 161315, 510965, 1377040, 3284400, 7120155, 14296205, 26954620, 48220900, 82510155, 135891245, 216513920, 335104000, 505531635, 745457685, 1077063260, 1527867460, 2131638355, 2929402245, 3970556240
OFFSET
1,1
LINKS
FORMULA
Empirical: a(n) = n^7 + (7/2)*n^6 + 7*n^5 + (35/4)*n^4 + (49/6)*n^3 + (21/4)*n^2 + (4/3)*n.
Conjectures from Colin Barker, Nov 10 2018: (Start)
G.f.: 35*x*(1 + x)*(1 + 4*x + x^2)*(1 + 10*x + x^2) / (1 - x)^8.
a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 8*a(n-7) - a(n-8) for n>8.
(End)
EXAMPLE
Some solutions for n=5:
..2....1....1....0....2....0....0....1....0....4....0....2....0....2....1....1
..5....2....5....1....0....5....2....3....2....0....2....3....3....0....4....1
..2....1....0....5....2....5....5....0....3....0....3....4....5....1....5....5
..5....5....0....5....1....2....2....0....0....3....3....4....2....4....1....4
..1....5....0....3....0....0....4....0....0....3....5....4....4....3....5....5
..0....3....2....1....3....3....0....3....5....2....0....0....4....5....4....1
..1....0....3....3....3....4....0....3....3....4....3....0....4....1....3....2
CROSSREFS
Row 1 of A249883.
Sequence in context: A028024 A226941 A249883 * A223957 A109508 A267834
KEYWORD
nonn
AUTHOR
R. H. Hardin, Nov 07 2014
STATUS
approved