%I #4 Nov 07 2014 21:13:35
%S 35,805,35,7420,1365,35,40740,18390,2335,35,161315,136010,46460,4019,
%T 35,510965,684585,463880,118638,6949,35,1377040,2644815,2967275,
%U 1599494,304782,12053,35,3284400,8435180,13967995,12991337,5545760,785512,20942
%N T(n,k)=Number of length n+6 0..k arrays with no seven consecutive terms having the maximum of any three terms equal to the minimum of the remaining four terms
%C Table starts
%C .35....805.....7420......40740......161315........510965........1377040
%C .35...1365....18390.....136010......684585.......2644815........8435180
%C .35...2335....46460.....463880.....2967275......13967995.......52655600
%C .35...4019...118638....1599494....12991337......74439217......331379292
%C .35...6949...304782....5545760....57148261.....398306829.....2092722780
%C .35..12053...785512...19280050...251933535....2134932975....13234666552
%C .35..20942..2027106...67100334..1111583581...11450986236....83742245992
%C .35..36396..5230332..233536170..4905139755...61427553360...529949953516
%C .35..63995.13575241..815743709.21698329172..330105978348..3358192453066
%C .35.112578.35268844.2851383464.96037899299.1774766437056.21288206931304
%H R. H. Hardin, <a href="/A249883/b249883.txt">Table of n, a(n) for n = 1..357</a>
%F Empirical for row n:
%F n=1: [polynomial of degree 7]
%F n=2: [polynomial of degree 8]
%F n=3: [polynomial of degree 9]
%F n=4: [polynomial of degree 10]
%F n=5: [polynomial of degree 11]
%F n=6: [polynomial of degree 12]
%F n=7: [polynomial of degree 13]
%e Some solutions for n=3 k=4
%e ..0....1....0....0....1....1....0....0....0....0....1....0....1....1....1....1
%e ..1....2....2....2....2....2....0....2....2....0....1....2....0....0....1....2
%e ..4....0....4....2....4....1....3....4....1....3....2....4....3....3....3....0
%e ..1....1....0....0....1....2....3....4....3....4....4....3....3....4....4....4
%e ..3....3....3....2....0....1....4....0....4....0....0....0....0....3....2....3
%e ..4....3....1....3....4....2....0....2....4....4....3....1....0....0....3....0
%e ..3....2....0....0....3....4....1....0....4....2....4....4....4....0....4....0
%e ..0....0....0....0....4....1....0....0....2....0....4....0....2....2....2....1
%e ..0....3....4....4....0....4....0....1....4....1....1....2....4....3....2....4
%K nonn,tabl
%O 1,1
%A _R. H. Hardin_, Nov 07 2014