login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = A017665(n)*A017666(n).
6

%I #25 Nov 11 2024 22:23:38

%S 1,6,12,28,30,2,56,120,117,45,132,21,182,84,40,496,306,78,380,210,672,

%T 198,552,10,775,273,1080,2,870,60,992,2016,176,459,1680,3276,1406,570,

%U 2184,36,1722,112,1892,231,390,828,2256,372,2793,4650,408,1274,2862

%N a(n) = A017665(n)*A017666(n).

%C If n is a k-multiperfect, then a(n) = k.

%H Allan C. Wechsler, <a href="/A249670/b249670.txt">Table of n, a(n) for n = 1..10000</a>

%F a(n) = A064987(n)/A009194(n)^2.

%F a(A000396(n)) = 2 (perfect).

%F a(A005820(n)) = 3 (tri-perfect).

%F For p prime, a(p) = p*(p+1).

%t a249670[n_Integer] := Numerator[DivisorSigma[-1, n]]*Denominator[DivisorSigma[-1, n]]; a249670 /@ Range[80] (* _Michael De Vlieger_, Nov 10 2014 *)

%o (PARI) a(n) = my(ab = sigma(n)/n); numerator(ab)*denominator(ab);

%o (Haskell)

%o a249670 n = div (n * s) (gcd n s ^ 2)

%o where s = sum (filter (\k -> mod n k == 0) [1..n])

%o -- _Allan C. Wechsler_, Mar 31 2023

%Y Cf. A000203 (sigma(n)).

%Y Cf. A017665/A017666 (abundancy of n).

%Y Cf. A009194 (gcd(n, sigma(n))), A064987 (n*sigma(n)).

%Y Cf. A000396, A005820, A027687, A046060, A046061.

%K nonn

%O 1,2

%A _Michel Marcus_, Nov 03 2014