The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A249498 Number of length 1+5 0..n arrays with every six consecutive terms having five times some element equal to the sum of the remaining five 1
 2, 123, 604, 2045, 5706, 13087, 26948, 50529, 88510, 146351, 231312, 351913, 518234, 742275, 1038016, 1421237, 1910418, 2525719, 3290420, 4230141, 5373382, 6751463, 8398944, 10353505, 12656246, 15351627, 18488128, 22117469, 26295930, 31083331 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Row 1 of A249497 LINKS R. H. Hardin, Table of n, a(n) for n = 1..111 FORMULA Empirical: a(n) = 3*a(n-1) -3*a(n-2) +2*a(n-3) -2*a(n-4) +a(n-5) -a(n-6) +a(n-7) +a(n-8) -a(n-9) +a(n-10) -2*a(n-11) +2*a(n-12) -3*a(n-13) +3*a(n-14) -a(n-15) Empirical for n mod 60 = 0: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + 1 Empirical for n mod 60 = 1: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (487/60) Empirical for n mod 60 = 2: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + (139/15) Empirical for n mod 60 = 3: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + (203/20) Empirical for n mod 60 = 4: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (457/15) Empirical for n mod 60 = 5: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + (437/12) Empirical for n mod 60 = 6: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (151/5) Empirical for n mod 60 = 7: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + (881/60) Empirical for n mod 60 = 8: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (329/15) Empirical for n mod 60 = 9: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n + (899/20) Empirical for n mod 60 = 10: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (77/3) Empirical for n mod 60 = 11: a(n) = (6/5)*n^5 + (9/4)*n^4 + (11/3)*n^3 + 2*n^2 + n - (1487/60) EXAMPLE Some solutions for n=6 ..1....1....4....4....3....1....0....6....4....2....2....5....2....5....6....3 ..4....4....6....5....4....6....3....3....5....0....2....2....2....4....4....4 ..3....5....0....3....6....6....1....6....5....0....3....1....0....3....5....5 ..3....6....3....4....0....1....1....2....6....6....4....4....5....0....3....1 ..3....4....4....1....3....4....1....0....5....2....2....6....6....5....6....6 ..4....4....1....1....2....6....0....1....5....2....5....6....3....1....6....5 CROSSREFS Sequence in context: A013475 A013471 A249497 * A249499 A249500 A249501 Adjacent sequences: A249495 A249496 A249497 * A249499 A249500 A249501 KEYWORD nonn AUTHOR R. H. Hardin, Oct 30 2014 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 29 13:10 EDT 2023. Contains 365771 sequences. (Running on oeis4.)