OFFSET
1,1
COMMENTS
Table starts
.2.123.604.2045.5706.13087..26948..50529...88510..146351...231312...351913
.2.123.604.2045.5706.15027..33108..65269..119150..203111...328552...523633
.2.123.604.2045.5706.17291..40824..85257..163450..289707...483580...806469
.2.123.604.2045.5706.19927..50372.111741..225686..418771...727448..1270207
.2.123.604.2045.5706.22983..62060.146193..311242..607753..1107386..2026811
.2.123.604.2045.5706.26507..76228.190309..426610..879757..1694154..3254197
.2.123.604.2045.5706.30547..93248.246009..579390.1264377..2591232..5230133
.2.123.604.2045.5706.38087.122908.339429..830450.1899937..4047110..8663387
.2.123.604.2045.5706.47415.161652.468129.1192490.2872441..6388806.14468055
.2.123.604.2045.5706.58843.211682.643233.1707924.4349355.10156570.24312849
LINKS
R. H. Hardin, Table of n, a(n) for n = 1..914
FORMULA
Empirical for column k:
k=1: a(n) = a(n-1)
k=2: a(n) = a(n-1)
k=3: a(n) = a(n-1)
k=4: a(n) = a(n-1)
k=5: a(n) = a(n-1)
k=6: [linear recurrence of order 43]
Empirical for row n:
n=1: [linear recurrence of order 15; also a polynomial of degree 5 plus a degree zero quasipolynomial with period 60]
EXAMPLE
Some solutions for n=6 k=4
..1....1....4....3....4....3....0....0....1....3....3....3....2....1....4....4
..0....0....1....3....2....3....0....2....2....0....4....2....4....2....3....1
..0....4....0....4....2....0....1....0....2....4....2....2....1....4....4....2
..0....1....0....1....0....4....0....4....4....3....3....0....1....4....3....1
..2....4....0....3....0....0....3....2....2....2....0....1....1....0....1....0
..3....2....1....4....4....2....2....4....1....0....0....4....3....1....3....4
..1....1....4....3....4....3....0....0....1....3....3....3....2....1....4....4
..0....0....1....3....2....3....0....2....2....0....4....2....4....2....3....1
..0....4....0....4....2....0....1....0....2....4....2....2....1....4....4....2
..0....1....0....1....0....4....0....4....4....3....3....0....1....4....3....1
..2....4....0....3....0....0....3....2....2....2....0....1....1....0....1....0
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
R. H. Hardin, Oct 30 2014
STATUS
approved