login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangle read by rows: interleaving successive pairs of rows of Sierpiński's triangle.
7

%I #14 Jul 28 2023 04:08:06

%S 1,1,1,1,1,1,0,1,1,1,1,1,0,1,1,1,1,1,0,1,0,1,0,1,1,1,1,1,0,0,0,0,0,1,

%T 1,1,1,1,0,1,1,0,0,0,1,1,0,1,1,1,1,1,0,1,1,1,0,1,1,1,0,1,1,1,1,1,0,1,

%U 0,1,0,1,0,1,0,1,0,1,0,1,1,1,1,1,0,0

%N Triangle read by rows: interleaving successive pairs of rows of Sierpiński's triangle.

%C A105321(n) = number of ones in row n;

%C A249304(n) = number of zeros in row n;

%C numbers, when rows are concatenated: A249183, A249184.

%H Reinhard Zumkeller, <a href="/A249133/b249133.txt">Table of n, a(n) for n = 0..10200</a>

%F T(n,k) = A249095(n,k) mod 2.

%e . 0: 1

%e . 1: 1 1 1

%e . 2: 1 1 0 1 1

%e . 3: 1 1 1 0 1 1 1

%e . 4: 1 1 0 1 0 1 0 1 1

%e . 5: 1 1 1 0 0 0 0 0 1 1 1

%e . 6: 1 1 0 1 1 0 0 0 1 1 0 1 1

%e . 7: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

%e . 8: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1

%e . 9: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1

%e . 10: 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1

%e . 11: 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1

%e . 12: 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1

%e . 13: 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1

%e . 14: 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1

%e . 15: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1

%e . 16: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 .

%t row[n_] := Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]; Table[row[n], {n, 0, 10}] // Flatten (* _Amiram Eldar_, Jul 28 2023 *)

%o (Haskell)

%o a249133 n k = a249133_tabf !! n !! k

%o a249133_row n = a249133_tabf !! n

%o a249133_tabf = map (map (flip mod 2)) a249095_tabf

%Y Cf. A005408 (row lengths), A105321 (row sums), A249095, A249304, A249183, A249184, A047999 (Sierpiński).

%K nonn,tabf

%O 0

%A _Reinhard Zumkeller_, Nov 14 2014