login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A249133
Triangle read by rows: interleaving successive pairs of rows of Sierpiński's triangle.
7
1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0
OFFSET
0
COMMENTS
A105321(n) = number of ones in row n;
A249304(n) = number of zeros in row n;
numbers, when rows are concatenated: A249183, A249184.
LINKS
FORMULA
T(n,k) = A249095(n,k) mod 2.
EXAMPLE
. 0: 1
. 1: 1 1 1
. 2: 1 1 0 1 1
. 3: 1 1 1 0 1 1 1
. 4: 1 1 0 1 0 1 0 1 1
. 5: 1 1 1 0 0 0 0 0 1 1 1
. 6: 1 1 0 1 1 0 0 0 1 1 0 1 1
. 7: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
. 8: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1
. 9: 1 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 1
. 10: 1 1 0 1 1 0 0 0 0 0 0 0 0 0 0 0 1 1 0 1 1
. 11: 1 1 1 0 1 1 1 0 0 0 0 0 0 0 0 0 1 1 1 0 1 1 1
. 12: 1 1 0 1 0 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 0 1 0 1 1
. 13: 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1 0 0 0 0 0 1 1 1
. 14: 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1 0 0 0 1 1 0 1 1
. 15: 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1 0 1 1 1
. 16: 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 1 .
MATHEMATICA
row[n_] := Mod[Riffle[Binomial[n, Range[0, n]], Binomial[n - 1, Range[0, n - 1]]], 2]; Table[row[n], {n, 0, 10}] // Flatten (* Amiram Eldar, Jul 28 2023 *)
PROG
(Haskell)
a249133 n k = a249133_tabf !! n !! k
a249133_row n = a249133_tabf !! n
a249133_tabf = map (map (flip mod 2)) a249095_tabf
CROSSREFS
Cf. A005408 (row lengths), A105321 (row sums), A249095, A249304, A249183, A249184, A047999 (Sierpiński).
Sequence in context: A303300 A249865 A152904 * A118102 A089509 A157972
KEYWORD
nonn,tabf
AUTHOR
Reinhard Zumkeller, Nov 14 2014
STATUS
approved