login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A249010
Expansion of (P(q) - 3*P(q^2) - 5*P(q^5) + 15*P(q^10)) / 8 in powers of q where P() is a Ramanujan Eisenstein series.
0
1, -3, 0, -12, 6, -3, 0, -24, 18, -39, 0, -36, 24, -42, 0, -12, 42, -54, 0, -60, 6, -96, 0, -72, 72, -3, 0, -120, 48, -90, 0, -96, 90, -144, 0, -24, 78, -114, 0, -168, 18, -126, 0, -132, 72, -39, 0, -144, 168, -171, 0, -216, 84, -162, 0, -36, 144, -240, 0
OFFSET
0,2
COMMENTS
Ramanujan's Eisenstein series: P(q) (see A006352), Q(q) (A004009), R(q) (A013973).
FORMULA
If n>0 then a(n) = -3 * b(n) where b is multiplicative with b(2^e) = 2 - 2^e, b(5^e) = 1, and b(p^e) = (p^(e+1) - 1) / (p - 1) otherwise.
G.f.: 1 - 3 * Sum_{k>0} c(k) * x^k / (1 - x^k)^2 where c(k) is a period 10 integer sequence.
G.f.: 1 - 3/2 * Sum_{k>0} c(k) * k * x^k / (1 - x^k) where c(k) is a period 10 integer sequence.
a(4*n) = A028887(n). a(4*n + 2) = 0.
EXAMPLE
G.f. = 1 - 3*q - 12*q^3 + 6*q^4 - 3*q^5 - 24*q^7 + 18*q^8 - 39*q^9 + ...
PROG
(PARI) {a(n) = local(A, p, e); if( n<1, n==0, A = factor(n); -3 * prod( k=1, matsize(A)[1], if( p=A[k, 1], e=A[k, 2]; if( p==2, 2 - 2^e, if( p==5, 1, (p^(e+1) - 1) / (p - 1))))))};
(PARI) {a(n) = if( n<1, n==0, -3 * sumdiv(n, k, n/k * [8, 1, -2, 1, -2, -4, -2, 1, -2, 1][k%10 + 1]))};
(PARI) {a(n) = if( n<1, n==0, -3/2 * sumdiv(n, k, k * [0, 2, -1, 2, -1, 0, -1, 2, -1, 2][k%10 + 1]))};
(Magma) A := Basis( ModularForms( Gamma0(10), 2), 60); A[1] - 3*A[2];
CROSSREFS
Cf. A028887.
Sequence in context: A194093 A055314 A110890 * A071534 A336667 A269880
KEYWORD
sign
AUTHOR
Michael Somos, Oct 18 2014
STATUS
approved