login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Decimal expansion of gamma = 8*lambda^2, a critical threshold of a boundary value problem, where lambda is Laplace's limit constant A033259.
3

%I #14 Dec 13 2024 09:41:27

%S 3,5,1,3,8,3,0,7,1,9,1,2,5,1,6,1,2,0,6,2,0,7,8,3,7,0,9,3,2,3,8,8,2,3,

%T 5,8,7,1,0,9,1,3,4,2,1,1,9,5,1,2,8,4,3,6,8,1,8,2,5,4,1,8,5,2,5,3,4,9,

%U 2,1,8,6,0,8,7,7,3,5,3,0,6,2,2,4,5,1,3,9,8,4,8,8,7,6,5,9,9,9,7,5,7,3,9,5

%N Decimal expansion of gamma = 8*lambda^2, a critical threshold of a boundary value problem, where lambda is Laplace's limit constant A033259.

%C The boundary value problem y''(x) + c*exp(y(x)) = 0, y(0) = y(1) = 0 and c > 0, has 0, 1 or 2 solutions when c > gamma, c = gamma and c < gamma, respectively. [After Steven Finch]

%D Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 4.8 Laplace limit constant, p. 266.

%H G. C. Greubel, <a href="/A248916/b248916.txt">Table of n, a(n) for n = 1..20000</a>

%H Steven R. Finch, <a href="http://arxiv.org/abs/2001.00578">Errata and Addenda to Mathematical Constants</a>, p. 32.

%H Eric Weisstein's MathWorld, <a href="http://mathworld.wolfram.com/LaplaceLimit.html">Laplace Limit</a>

%e 3.5138307191251612062078370932388235871...

%t digits = 104; lambda = x /. FindRoot[x Exp[Sqrt[1 + x^2]]/(1 + Sqrt[1 + x^2]) == 1, {x, 1}, WorkingPrecision -> digits + 5]; gamma = 8*lambda^2; RealDigits[gamma, 10, digits] // First

%Y Cf. A033259, A085984.

%K nonn,cons,easy

%O 1,1

%A _Jean-François Alcover_, Oct 16 2014