login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248765
Greatest k such that k^4 divides n!
4
1, 1, 1, 1, 1, 2, 2, 2, 6, 12, 12, 12, 12, 12, 12, 24, 24, 144, 144, 720, 720, 720, 720, 1440, 1440, 1440, 4320, 60480, 60480, 60480, 60480, 120960, 120960, 241920, 1209600, 3628800, 3628800, 3628800, 3628800, 7257600
OFFSET
1,6
COMMENTS
Every term divides all its successors.
LINKS
Rafael Jakimczuk, On the h-th free part of the factorial, International Mathematical Forum, Vol. 12, No. 13 (2017), pp. 629-634.
FORMULA
From Amiram Eldar, Sep 01 2024: (Start)
a(n) = A053164(n!).
a(n) = (n! / A248766(n))^(1/4) = A248764(n)^(1/4).
log(a(n)) = (1/4)*n*log(n) - (2*log(2)+1)*n/4 + o(n) (Jakimczuk, 2017). (End)
EXAMPLE
a(6) = 2 because 2^4 divides 6! and if k > 2 then k^4 does not divide 6!.
MATHEMATICA
z = 40; f[n_] := f[n] = FactorInteger[n!]; r[m_, x_] := r[m, x] = m*Floor[x/m];
u[n_] := Table[f[n][[i, 1]], {i, 1, Length[f[n]]}];
v[n_] := Table[f[n][[i, 2]], {i, 1, Length[f[n]]}];
p[m_, n_] := p[m, n] = Product[u[n][[i]]^r[m, v[n]][[i]], {i, 1, Length[f[n]]}];
m = 4; Table[p[m, n], {n, 1, z}] (* A248764 *)
Table[p[m, n]^(1/m), {n, 1, z}] (* A248765 *)
Table[n!/p[m, n], {n, 1, z}] (* A248766 *)
f[p_, e_] := p^Floor[e/4]; a[1] = 1; a[n_] := Times @@ f @@@ FactorInteger[n!]; Array[a, 30] (* Amiram Eldar, Sep 01 2024 *)
PROG
(PARI) a(n) = {my(f = factor(n!)); prod(i = 1, #f~, f[i, 1]^(f[i, 2]\4)); } \\ Amiram Eldar, Sep 01 2024
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 14 2014
STATUS
approved