OFFSET
1,3
COMMENTS
q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). (See A248669.)
LINKS
Clark Kimberling, Table of n, a(n) for n = 1..5000
FORMULA
q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
EXAMPLE
The first six polynomials:
q(1,x) = 1
q(2,x) = x + 2
q(3,x) = x^2 + 4 x + 5
q(4,x) = x^3 + 7 x^2 + 17 x + 16
q(5,x) = x^4 + 11 x^3 + 45 x^2 + 8 x + 65
q(6,x) = x^5 + 16 x^4 + 100 x^3 + 309 x^2 + 485 x + 326
First six rows of the triangle:
1
1 2
1 4 5
1 7 17 16
1 11 45 84 65
1 16 100 309 485 326
MATHEMATICA
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
TableForm[Table[q[x, n], {n, 1, 6}]];
TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
c[n_] := c[n] = Reverse[CoefficientList[q[x, n], x]];
TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
CROSSREFS
KEYWORD
AUTHOR
Clark Kimberling, Oct 11 2014
STATUS
approved