login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248670
Triangular array of coefficients of polynomials q defined in Comments; the coefficients are written in the order of decreasing powers of x.
2
1, 1, 2, 1, 4, 5, 1, 7, 17, 16, 1, 11, 45, 84, 65, 1, 16, 100, 309, 485, 326, 1, 22, 196, 909, 2339, 3236, 1957, 1, 29, 350, 2281, 8702, 19609, 24609, 13700, 1, 37, 582, 5081, 26950, 89225, 181481, 210572, 109601, 1, 46, 915, 10319, 72679, 331775, 984506
OFFSET
1,3
COMMENTS
q(n,x) = 1 + k+x + (k+x)(k-1+x) + (k+x)(k-1+x)(k-2+x) + ... + (k+x)(k-1+x)(k-2+x)...(1+x). (See A248669.)
LINKS
FORMULA
q(n,x) = (x + n - 1)*q(n-1,x) + 1, with q(1,x) = 1.
EXAMPLE
The first six polynomials:
q(1,x) = 1
q(2,x) = x + 2
q(3,x) = x^2 + 4 x + 5
q(4,x) = x^3 + 7 x^2 + 17 x + 16
q(5,x) = x^4 + 11 x^3 + 45 x^2 + 8 x + 65
q(6,x) = x^5 + 16 x^4 + 100 x^3 + 309 x^2 + 485 x + 326
First six rows of the triangle:
1
1 2
1 4 5
1 7 17 16
1 11 45 84 65
1 16 100 309 485 326
MATHEMATICA
t[x_, n_, k_] := t[x, n, k] = Product[x + n - i, {i, 1, k}];
q[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];
TableForm[Table[q[x, n], {n, 1, 6}]];
TableForm[Table[Factor[q[x, n]], {n, 1, 6}]];
c[n_] := c[n] = Reverse[CoefficientList[q[x, n], x]];
TableForm[Table[c[n], {n, 1, 12}]] (* A248669 array *)
Flatten[Table[c[n], {n, 1, 12}]] (* A248669 sequence *)
CROSSREFS
KEYWORD
nonn,tabl,easy
AUTHOR
Clark Kimberling, Oct 11 2014
STATUS
approved