login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Triangular array of coefficients of polynomials p(n,x) defined in Comments; these are the polynomials defined at A248664, but here the coefficients are written in the order of decreasing powers of x.
7

%I #10 Jul 01 2016 23:58:44

%S 1,2,2,9,12,5,64,112,68,16,625,1375,1125,420,65,7776,20736,21600,

%T 11124,2910,326,117649,369754,470596,311787,114611,22652,1957,2097152,

%U 7602176,11468800,9342976,4455424,1254976,196872,13700,43046721,176969853,309298662

%N Triangular array of coefficients of polynomials p(n,x) defined in Comments; these are the polynomials defined at A248664, but here the coefficients are written in the order of decreasing powers of x.

%C The polynomial p(n,x) is defined as the numerator when the sum 1 + 1/(n*x + 1) + 1/((n*x + 1)(n*x + 2)) + ... + 1/((n*x + 1)(n*x + 2)...(n*x + n - 1)) is written as a fraction with denominator (n*x + 1)(n*x + 2)...(n*x + n - 1).

%C These polynomials occur in connection with factorials of numbers of the form [n/k] = floor(n/k); e.g., Sum_{n >= 0} ([n/k]!^k)/n! = Sum_{n >= 0} (n!^k)*p(k,n)/(k*n + k - 1)!.

%H Clark Kimberling, <a href="/A248665/b248665.txt">Table of n, a(n) for n = 1..5000</a>

%e The first six polynomials:

%e p(1,x) = 1

%e p(2,x) = 2 (x + 1)

%e p(3,x) = 9x^2 + 12 x + 5

%e p(4,x) = 4 (16 x^3 + 28 x^2 + 17 x + 4)

%e p(5,x) = 5 (125 x^4 + 275 x^3 + 225 x^2 + 84 x + 13)

%e p(6,x) = 2 (3888 x^5 + 10368 x^4 + 10800 x^3 + 5562 x^2 + 1455 x + 163)

%e First six rows of the triangle:

%e 1

%e 2 2

%e 9 12 5

%e 64 112 68 16

%e 625 1375 1125 420 65

%e 7776 20736 21600 11124 2910 326

%t t[x_, n_, k_] := t[x, n, k] = Product[n*x + n - i, {i, 1, k}];

%t p[x_, n_] := Sum[t[x, n, k], {k, 0, n - 1}];

%t TableForm[Table[Factor[p[x, n]], {n, 1, 6}]]

%t c[n_] := c[n] = Reverse[CoefficientList[p[x, n], x]];

%t TableForm[Table[c[n], {n, 1, 10}]] (* A248665 array *)

%t Flatten[Table[c[n], {n, 1, 10}]] (* A248665 sequence *)

%t u = Table[Apply[GCD, c[n]], {n, 1, 60}] (*A248666*)

%t Flatten[Position[u, 1]] (*A248667*)

%t Table[Apply[Plus, c[n]], {n, 1, 60}] (*A248668*)

%Y Cf. A248664, A248666, A248667, A248668, A248669.

%K nonn,tabl,easy

%O 1,2

%A _Clark Kimberling_, Oct 11 2014