login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248641
Lexicographically earliest positive sequence which does not contain a 4-term equidistant subsequence (a(n+k*d); k=0,1,2,3) in arithmetic progression.
3
1, 1, 1, 2, 1, 1, 2, 1, 1, 1, 2, 2, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 3, 3, 3, 1, 1, 3, 1, 1, 1, 2, 2, 1, 2, 2, 1, 2, 2, 2, 3, 3, 2, 3, 2, 3, 3, 5, 1, 1, 1, 3, 1, 1, 3, 1, 1, 1, 2, 2, 2, 3, 1, 2, 1, 1, 1, 2, 2, 2, 3, 4, 2, 3, 2, 2, 2, 3, 3, 1, 3, 3, 3, 5, 5, 4, 1, 1, 1, 3, 1, 2, 3, 1, 5, 3, 2, 6, 1, 3, 2, 2, 3, 2, 1, 1, 3, 3, 1, 1, 1
OFFSET
0,4
COMMENTS
See A248625 for more information, links and examples.
It is a variation of A229037 where 3-term is replaced by 4-term (and with “lead index” 0 instead of 1)
LINKS
PROG
(PARI) a=[]; for(n=1, 190, a=concat(a, 1); while(hasAP(a, 4), a[#a]++)); a \\ See A248625 for hasAP().
(SageMath)
cpdef FourFree(int n):
cdef int i, r, k, s, L1, L2, L3
cdef list L, Lb
cdef set b
L=[1, 1, 1]
for k in range(3, n):
b=set()
for i in range(k):
if 3*((k-i)/3)==k-i:
r=(k-i)/3
L1, L2, L3=L[i], L[i+r], L[i+2*r]
s=3*(L2-L1)+L1
if s>0 and L3==2*(L2-L1)+L1:
b.add(s)
if 1 not in b:
L.append(1)
else:
Lb=list(b)
Lb.sort()
for t in Lb:
if t+1 not in b:
L.append(t+1)
break
return L
# Sébastien Palcoux, Aug 28 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
M. F. Hasler, Oct 10 2014
STATUS
approved