login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A248629
Least k such that 6 - sum{(h^2)/2^h, h = 1..k} < 1/3^n.
4
9, 11, 13, 15, 17, 19, 21, 22, 24, 26, 28, 29, 31, 33, 35, 36, 38, 40, 41, 43, 45, 47, 48, 50, 52, 53, 55, 57, 58, 60, 62, 63, 65, 67, 68, 70, 72, 73, 75, 76, 78, 80, 81, 83, 85, 86, 88, 90, 91, 93, 95, 96, 98, 99, 101, 103, 104, 106, 108, 109, 111, 112, 114
OFFSET
1,1
COMMENTS
This sequence provides insight into the manner of convergence of sum{(h^2)/2^h, h = 1..k} to 6.
LINKS
EXAMPLE
Let s(n) = 6 - sum{(h^2)/2^h, h = 1..n}. Approximations follow:
n ... s(n) ........ 1/3^n
1 ... 5.50000 ... 0.333333
2 ... 4.50000 ... 0.111111
3 ... 3.37500 ... 0.037037
4 ... 2.37500 ... 0.012345
5 ... 1.59375 ... 0.004115
6 ... 1.03125 ... 0.001371
7 ... 0.64843 ... 0.000457
8 ... 0.39843 ... 0.000152
9 ... 0.24023 ... 0.000050
10 .. 0.14257 ... 0.000018
11 .. 0.08349 ... 0.000006
a(2) = 11 because s(11) < 1/9 < s(10).
MATHEMATICA
z = 300; p[k_] := p[k] = Sum[(h^2/2^h), {h, 1, k}]
d = N[Table[6 - p[k], {k, 1, z/5}], 12]
f[n_] := f[n] = Select[Range[z], 6 - p[#] < 1/3^n &, 1]
u = Flatten[Table[f[n], {n, 1, z}]] (* A248629 *)
d = Differences[u]
v = Flatten[Position[d, 1]] (* A248630 *)
CROSSREFS
Sequence in context: A070699 A065454 A334688 * A008558 A335912 A123760
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Oct 10 2014
STATUS
approved