login
A248594
Semiprimes whose next four consecutive integers have exactly three, four, five, and six prime factors, respectively (allowing multiplicity of factors).
0
153221, 196621, 222422, 230261, 288437, 307373, 340421, 400082, 657302, 660713, 706073, 723461, 777773, 838562, 843521, 954581, 961621, 988601, 1009985, 1031846, 1034933, 1190822, 1215821, 1246802, 1384621, 1409873, 1612321, 1723082, 1737122, 1886441
OFFSET
1,1
COMMENTS
This sequence is related to A113150; for instance, a(14) = 838562 = A113150(1) + 1, since 838561 is prime. - Michel Marcus, Oct 23 2014
EXAMPLE
a(1)=153221 because 153221 is a product of 2 primes (17*9013) and
153222 is a product of 3 primes (2 * 3 * 25537) and
153223 is a product of 4 primes (7 * 7 * 53 * 59) and
153224 is a product of 5 primes (2 * 2 * 2 * 107 * 179) and
153225 is a product of 6 primes (3 * 3 * 3 * 5 * 5 * 227).
PROG
(PARI) isok(n) = bigomega(n)==2 && bigomega(n+1)==3 && bigomega(n+2)==4 && bigomega(n+3)==5 && bigomega(n+4)==6; \\ Michel Marcus, Oct 23 2014
CROSSREFS
Sequence in context: A233947 A172732 A172789 * A339528 A234553 A073086
KEYWORD
nonn,easy
AUTHOR
Gil Broussard, Oct 09 2014
STATUS
approved