login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

A248414
Decimal expansion of theta_2, one of the angles associated with the bow-and-arrow configuration used in the 2-arc smallest length problem.
2
1, 1, 9, 1, 0, 4, 7, 8, 2, 8, 5, 8, 5, 2, 0, 7, 3, 1, 2, 1, 8, 7, 6, 7, 7, 9, 4, 3, 0, 8, 6, 8, 4, 6, 3, 5, 0, 8, 0, 4, 6, 8, 3, 9, 5, 2, 6, 5, 3, 6, 9, 0, 9, 3, 1, 0, 7, 6, 3, 4, 3, 4, 7, 0, 5, 5, 7, 2, 4, 4, 0, 4, 6, 8, 7, 2, 2, 6, 9, 9, 1, 7, 2, 6, 1, 6, 8, 7, 9, 1, 8, 6, 2, 8, 4, 3, 3, 3, 6, 1, 2, 2, 8
OFFSET
1,3
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.11 Beam detection constants, p. 516.
FORMULA
theta_2 = 2*arcsin(2*cos(theta_1)), where theta_1 is A248413.
EXAMPLE
1.191047828585207312187677943086846350804683952653690931...
MATHEMATICA
x1 = Root[x^10 + 65*x^9 - 2139*x^8 + 20476*x^7 - 78054*x^6 + 126214*x^5 - 78054*x^4 + 20476*x^3 - 2139*x^2 + 65*x + 1, x, 4]; theta1 = 4*ArcTan[Sqrt[x1]]; theta2 = 2*ArcSin[2*Cos[theta1]]; RealDigits[theta2, 10, 103] // First
CROSSREFS
Cf. A248413 (theta_1), A248415 (length upper bound).
Sequence in context: A070060 A329085 A273636 * A176980 A227817 A372948
KEYWORD
nonn,cons
AUTHOR
STATUS
approved