login
A248411
Decimal expansion of the best lower bound for the Steiner ratio rho_3, the least upper bound on the ratio of the length of the Steiner minimal tree to the length of the minimal tree in dimension 3.
1
6, 1, 5, 8, 2, 7, 7, 4, 8, 1, 2, 3, 4, 0, 6, 6, 0, 6, 7, 1, 7, 1, 1, 4, 3, 9, 7, 3, 0, 1, 4, 4, 1, 3, 9, 3, 4, 4, 1, 0, 9, 6, 5, 3, 5, 1, 3, 3, 2, 1, 3, 2, 9, 4, 3, 0, 9, 3, 9, 3, 5, 0, 2, 2, 4, 8, 6, 7, 6, 9, 8, 4, 1, 1, 7, 4, 9, 8, 0, 8, 0, 3, 0, 7, 8, 2, 3, 6, 4, 5, 8, 9, 0, 6, 0, 1, 3, 9, 9, 3, 8, 2
OFFSET
0,1
REFERENCES
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 8.6 Steiner Tree Constants, p. 504.
FORMULA
b = (2 + x - sqrt(x^2 + x + 1))/sqrt(3), where x is the positive root of 128*x^6 + 456*x^5 + 783*x^4 + 764*x^3 + 408*x^2 + 108*x - 28.
EXAMPLE
x = 0.1486637196311613967236467715222572732594626883945180141...
b = 0.6158277481234066067171143973014413934410965351332132943...
MATHEMATICA
x0 = Root[128*x^6 + 456*x^5 + 783*x^4 + 764*x^3 + 408*x^2 + 108*x - 28, 2]; b = (2 + x0 - Sqrt[x0^2 + x0 + 1])/Sqrt[3]; RealDigits[b, 10, 102] // First
CROSSREFS
Cf. A220351 (upper bound of rho_3).
Sequence in context: A019847 A021946 A257704 * A011439 A094774 A231925
KEYWORD
nonn,cons
AUTHOR
STATUS
approved